

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Piping Systems Research & Engineering Company (NTP Truboprovod)

Equipment Stress Analysis and Sizing

Version 3.06

User's Manual

Introduction

PASS/EQUIP is strength analysis software for vessels and their components designed for estimating load-carrying capacity in operation, test and assembly states. PASS/EQUIP is the basic module, which analyzes strength and stability of horizontal and vertical vessels using national and foreign standards.

PASS/EQUIP-Columns module analyzes strength and stability of columns considering wind and seismic loads.

PASS/EQUIP-Heat Exchangers module analyzes tube and casing heat exchangers (HE), including analysis of tube plates, tubes, pass partitions, casing, expansion joints, expansion vessel, floating head, and air–cooled heat exchangers.

Calculation of vertical steel tanks, designed for oil and oil product storage, is performed via module **PASS/EQUIP-Tanks**. For tanks, it is possible to create models of frame roofs and export it with loading and fixing to the ANSYS program for further strength and buckling calculations.

PASS/EQUIP-Seismic module analyses strength and stability of horizontal and vertical vessels considering seismic loads.

The program automatically creates a high-detailed solid model of vessel, with possibility of export to ACIS, IGES, Parasolid, STEP, JT, VRML, STL files.

This document contains a program overview, limitations of use, analysis methods, description of the user interface, information on required input data and analysis results, and installation and registration details.

A user-friendly interface and an easy to understand system for creating and analysing vessels makes the software accessible to any user. A convenient 3D graphic display allows easy verification of the accuracy of dimensions of both individual components and the entire model.

There may be small differences between this Manual's content and the software installed, as the program is being constantly updated.

Contents

1.1.	1
1. General	7
1.1. Program overview	7
1.2. CAPABILITIES	
1.3. LIMITATIONS OF USE	11
2. System Administrator Manual	12
2.1. System requirements	12
2.1.1. Minimum configuration	
2.1.2. Recommended configuration	
2.2. DISTRIBUTION KIT	12
2.3. SOFTWARE INSTALLATION	12
2.4. NETWORK KEY (DONGLE) INSTALLATION	13
2.5. SOFTWARE PROTECTION AGAINST UNAUTHORIZED USE	14
2.6. INSTALLATION USING ACTIVE DIRECTORY (AD) TECHNOLOGY	17
3. Working with PASS/EQUIP	19
3.1. GEOMETRIC KERNEL, SOLID MODEL GENERATION	19
3.2. PROGRAM MODEL TYPES	
3.2.1. Horizontal vessels	20
3.2.2. Vertical vessels	21
3.2.3. Column vessels	22
3.2.4. Vertical tanks	23
3.3. CREATING, VIEWING AND SAVING INPUT AND OUTPUT DATA	24
3.4. Software window	25
3.5. General data	27
3.6. WIND LOADS	29
3.7. SEISMIC AND INERTIAL LOADS	29
3.8. ELEVATION (HEIGHT) OF THE VESSEL	
3.9. INSULATION CALCULATION DATA	
3.10. MAIN MENU	
"VIEW" AND "STANDARD VIEWS" TOOLBARS	
3.11. MODEL TREE	41
3.12. MATERIALS USING	
3.13. THEMES TOOLBAR, CUSTOMIZATION OF TOOLBARS AND MENUS	
3.14. Software settings	
3.15. SOFTWARE UPDATE SYSTEM	
3.16. MEASUREMENT UNIT SETTINGS	/10

3.17. DATA INPUT	
3.17.1.1 Component name	
3.17.1.2 Code	
3.17.1.3 Temperature	
3.17.1.4 Design pressure	
3.17.1.5 Design values calculation	
3.17.1.6 Material	
3.17.1.7 Standard dimensions	
3.17.1.8 Negative tolerance	
3.17.1.9 Weld strength ratio 3.17.1.10 Insulation and lining	
3.17.1.11 Low-cycle fatigue	
3.17.1.12 Defects according to GOST 34233.11-2017	01
3.17.1.12 Detects according to GOST 54255.11-2017	
3.17.2. Cylindrical shell	
3.17.3. Conical transition	
3.17.4. Dished head	
3.17.5. Flat conical head	
3.17.6. Steep conical head	
3.17.7. Flat head	
3.17.8. Flat head with ribs	
3.17.9. Integral flat heads with opening	
3.17.10. Oval head	
3.17.11. Spherical head without knuckle	
3.17.12. Nozzle	
3.17.13. Oval nozzle	
3.17.14. Bend	
3.17.15. Flange joint	
3.17.16. Reversal flange	
3.17.17. Bolted heads	
3.17.18. Stiffening ring	
3.17.19. Stiffening rings group	
3.17.20. Saddle support	
3.17.21. Bracket supports of horizontal vessel	
3.17.22. Bracket supports of vertical vessel	
3.17.23. Supporting legs	
3.17.24. Supporting lugs	
3.17.25. Supporting legs on the shell	
3.17.26. Supporting ring	
3.17.20. Supporting ring	
3.17.28. Joining pad	
3.17.29. <i>Joining paa</i> 3.17.29. <i>Trunnion</i>	
3.17.30. Additional loads	

3.17.31. Vessel fixing	134
3.17.32. Service platform	135
3.17.33. Column components	138
3.17.34. Skirt support	141
3.17.35. Heat Exchanger with stationary tube plates	150
3.17.36. Tube plate joint	
3.17.37. Tube bundle properties	154
3.17.37.1 Handling with tube sheet designer	
3.17.38. Heat Exchanger with expansion bellows on the casing	161
3.17.39. Heat Exchanger with expansion box in the casing	164
3.17.40. Heat Exchanger with U-shaped tubes	165
3.17.41. Heat Exchanger with Floating Head	166
3.17.42. Air cooled exchanger	168
3.17.43. Nozzle of the air cooler chamber	171
3.17.44. Cylindrical jacket	172
3.17.45. U-shaped jacket	174
3.17.46. Partial jacketing	178
3.17.47. Half-pipe coil jacket	
3.17.48. Half-pipe battery jacket	
3.17.49. Jacket with longitudinal channels	
3.17.50. Convex bulk	
3.17.51. Virtual bulk	
3.17.52. Ellipsoidal transition	
3.17.53. Expansion bellows	
3.17.54. Structure	
3.17.55. Vertical steel tank for oil and oil products	187
3.17.55.1 Tank wall	188
3.17.55.2 Tank roof	189
3.17.55.3 Supported roof designer	191
3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom	191 195
3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles	191 195 196
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 	191 195 196 <i>197</i>
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 	191 195 196 <i>197</i> <i>19</i> 8
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 	191 195 196 197 198 198
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 3.17.59. Spherical unbeaded high pressure head 	191 195 196 197 198 198 199
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 3.17.59. Spherical unbeaded high pressure head 3.17.60. Bolted high pressure flat head 	191 195 196 197 198 198 199 199
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 3.17.59. Spherical unbeaded high pressure head 3.17.60. Bolted high pressure flat head 3.17.61. Bolted high pressure spherical head 	191 195 196 197 198 198 199 199 200
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 3.17.59. Spherical unbeaded high pressure head 3.17.60. Bolted high pressure flat head 3.17.61. Bolted high pressure spherical head 3.17.62. High pressure nozzle 	191 195 196 197 198 198 199 199 200 201
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 3.17.59. Spherical unbeaded high pressure head 3.17.60. Bolted high pressure flat head 3.17.61. Bolted high pressure spherical head 3.17.62. High pressure nozzle 3.17.63. High pressure flange joint 	191 195 196 197 198 198 199 199 200 201 201
 3.17.55.3 Supported roof designer	191 195 196 197 198 198 199 200 201 201 202
 3.17.55.3 Supported roof designer 3.17.55.4 Tank bottom 3.17.55.5 Tank nozzles 3.17.56. High pressure cylinder 3.17.57. Ellipsoidal high pressure head 3.17.58. High pressure flat head 3.17.59. Spherical unbeaded high pressure head 3.17.60. Bolted high pressure flat head 3.17.61. Bolted high pressure spherical head 3.17.62. High pressure nozzle 3.17.63. High pressure flange joint 	191 195 196 197 198 198 199 200 201 201 202 203

3.17.67. Flange boss	206
3.17.68. Vessel assembly	
3.17.69. Rigid link	
3.17.70. Custom equipment	
3.17.71. Non-circular component	
3.18. EDITING AND DELETING INPUT DATA	
3.18.1. Group data editing	215
3.18.2. Insulation setting by list	
3.19. DATA EXPORT AND IMPORT	
3.19.1. Export of a tank model to Ansys	218
3.19.1.1 Model loading as per STO-SA-02-003, GOST 31385-2016	
3.19.1.2 Model loading as per API-650	
3.20. VESSEL COMPONENTS ANALYSIS AND OUTPUT OF RESULTS	
3.21. OUTPUT IN RTF FORMAT	223
3.21.1. Template creation	225
3.21.2. Use of variables	226
3.21.3. Conditional variables	227
3.21.4. Embedding the vessel image	230
3.21.5. Embedding analysis time and date	230
4. Example	232
4.1. DATA INPUT	232
4.2. ANALYSIS AND OUTPUT	
5. References	236

1. General

1.1. Program overview

PASS/EQUIP software allows static and low-cycle fatigue strength and stability analysis of pressure vessels and their components to evaluate loadcarrying capacity in operation state (including those operating in corrosive hydrogen sulfide environments), as well as in test and assembly states.

PASS/EQUIP analysis methods are based on the national and foreign codes listed in references.

Analysis is carried out for each component individually and includes the following:

- cylindrical shells (smooth and stiffened by stiffening rings);
- conical transitions;
- welded and bolted heads: spherical, ellipsoidal, torispherical, conical and flat (including reinforcing ribs and with a central opening) heads, spherical heads without knuckle;
- flange joints;
- nozzles in shells and heads;
- saddle supports and cylindrical shells for horizontal vessels;
- cylindrical shells and heads in areas of intersection with supporting lugs and legs for vertical vessels;
- cylindrical conical shells and dished heads at attachment points of lifting lugs, trunnions, joining pads; branches;
- bends;
- convex bulks;
- ellipsiodal transitions;
- column components under wind and seismic loads, including those mounted on a support structure;
- support shells of columns ;
- tube plates, casing, tubes, expansion joint, expansion vessel, floating head of heat exchange vessels;
- air-cooled chambers of heat exchangers, nozzles into chambers;
- jacketed vessel components(cylindrical, U-shaped, partially jacketed, coiled and half-pipe, with longitudinal pipes);

- components of high-pressure vessels (shells, heads: flanges, heads, stubins);
- components of vertical tanks;
- viewind windows, bosses;
- noncircular cross section (rectangular, oval, stayed and reinforced);
- strength and stability analysis of horizontal and vertical vessels is carried out considering seismic and wind loads.

PASS/EQUIP is recommended for design and verification analysis in oil-refining, petrochemical, natural gas, petroleum and other industries.

1.2. Capabilities

PASS/EQUIP basic module:

- data input and analysis. An error message will be display if all required data are not entered or data are entered incorrectly;
- input of additional wind, seismic loads, weight loads, forces and moments;
- thickness calculation (including for external pressure) and calculation of allowable pressure, forces and moments;
- analysis of vessel flange joints under pressure, external forces, moments and temperature stresses;
- automatic calculation of values such as weight, length, stiffening ring properties (in both cylindrical shells and saddle supports), circumference chord length, etc. after input of component dimensions and material properties;
- calculation of fluid volume, fill height, filling ratio and hydrostatic pressure in each component of horizontal and vertical vessel;
- calculation of volume and weight of the product in each insulated cavity of the vessel;
- representation of model structure as a structure tree.
- 3D graphic display which allows the color of separate components and the entire model to be customized;
- "wire-frame" and "transparent" view which allows internal components to be seen;
- displaying of model filling by product
- switching on/off of insulation and lining displaying;

- estimation of materials using;
- when dimensions or load properties of one component are changed, an option to automatically adjust all adjacent components is given;
- automatic creation of precise solid model of vessel and its export to popular solid modelling systems, i.e. ACIS, IGES, Parasolid, STEP, JT, VRML, STL.
- customization of measurement units;
- selection of materials from the database (as per GOST, ASME etc.) with possibility of adding new materials. Allowable stress, elasticity modulusand other values are automatically changed when changing material, temperature or wall thickness;
- selection of components from GOST (ATK) database (shells, heads, flanges, gaskets, studs of flange joints, saddle supports, supporting legs, cylindrical and conical supports, nozzles, cross-sections of ribs, stiffening rings, beam elements of support structure);
- analysis of horizontal vessel shells with any number (more than 2) and position of saddle supports; output of diagrams for deformation, bending moments, transverse forces and strength and stability allowances;
- calculation of many components (shells, heads, transitions) is performed as per the Russian (GOST, RD) and foreign (EN, ASME) codes selected by user.
- strength calculation of junction point between nozzle and vessel against influence of pressure and external loads, as per as per the Russian GOST 34233.3-2017) and foreign (WRC 537(107)/297) codes.
- calculation of pressure, external forces, moments and temperature stresses for valves and vessel flange joints, as per the Russian codes (GOST, RD), as well as per ASME VIII div.1 (pressure), ASME VIII div.2 (pressure and external loads).
- analysis of bolted heads (with flange joints) as a combined analysis of flange and bottom;
- calculation of low-cycle fatigue of vessel components;
- strength analysis of shells and heads considering displacement of weld joint edges, angularity and out-of-roundness of the shells;
- output, preview and printout of full (with intermediate analysis results) or short reports of component analyses;
- output of information on components that do not meet use or strength requirements;

- calculation of required test pressure as per components;
- building of compound unit model including two or more vessels;
- calculation of weights and positions of gravity centers, with consideration for filling per components and for vessel as a whole, in operating, assembly and test conditions;
- selection of thermal insulation of vessel components with consideration for climatic factors and work process-related parameters.
- export and import of vessel models from and to XML files;
- export of nozzles to Nozzle FEM format files (*.nzl);
- import of vessel models from MechaniCS XML format files. PASS/EQUIP-Columns module:
- determination of vibration frequency and modes for column type vessels with any number of components, including support structure;
- calculation of forces under wind loads (including resonance vortex excitation) and seismic loads for columns ;
- strength and stability analysis of column components;
- analysis of "cylinder + cone" support with the option of including a connecting shell;
- automatic determination of position and properties of most unsafe crosssection of supporting shell;
- calculation of loads on basement and support structure (if any) of columns.

PASS/EQUIP-Heat Exchangers module:

- input of heat-exchange component properties within a single multiwindow interface;
- calculation of forces in tube plates, casing and tubes;
- analysis of tube plates, casing, tubes, expansion joint, expansion vessel, floating head.

PASS/EQUIP-Tanks module:

- tank parameters setting in a single multiwindow dialog;
- automatic weight measurement;
- strength and stability analysis of the wall, stationary self-supporting roof and tank head, including wind, snow and seismic loads;
- creation of a frame roof model with automatic weight calculation;

- export of the model with loads and constraints to the ANSYS program for further strength and buckling analysis;
- wall anchorage estimation;
- calculation of loads on basement;
- estimation of allowable stresses on the nozzles of cut-ins in the tank wall; **PASS/EQUIP-Seismic** module:
- calculation of loads from seismic forces on horizontal and vertical vessels of seismic resistance categories Is, IIs, IIIs;
- analysis of vessel components considering seismic loads;
- consideration of vessel installation height when calculating seismic loads.

1.3. Limitations of use

This software assumes certain limitations in the design of vessel components, which are described in corresponding codes of standards listed in references [5].

If any of the conditions are not met for a given component, a warning message will be displayed and analysis for that component will not be performed. Analysis of other vessel components can be continued.

2. System Administrator Manual

2.1. System requirements

2.1.1. Minimum configuration

Pentium 4 processor

1 GB RAM

1 GB free space on hard drive.

Video adapter 1024x768 or higher, 16-bit (65535 colors) or higher.

Windows 8/10/11

Internet Explorer 5.0 or higher

Dongle drivers (come with distribution kit).

2.1.2. Recommended configuration

Intel Core i5 2 GHz or higher

4 GB RAM

Video adapter with OpenGL 2.0 hardware support, resolution 1280x1024x24

Windows 8/10/11

Internet Explorer 7.0 or higher

MS Word 2003 or higher

2.2. Distribution kit

- 1) Flash-disk contains the software installation package.
- 2) License Agreement.
- 3) Registration form (if purchased through dealer)..
- 4) Dongle(s) (one per purchased copy) providing protection against unauthorized access.
- 5) Software printed documentation.

2.3. Software installation

CAUTION: dongle must NOT be inserted in the USB drive during installation in order to avoid its corruption.

To install the software, follow these steps:

1) Log in as administrator.

- 2) Check if system clock is set correctly. Incorrect system time could make the dongle unusable.
- 3) Insert installation disk/flash.
- 4) Run *SETUP.EXE*.
- 5) Follow the installation instructions.

During the installation process, you will be asked to define the location path of the software and enter the directory name for the Start Menu. In addition, dongle drivers are installed if necessary. Distribution kit also includes *Acrobat Reader* software (installed separately, by launching arce505enu.exe in acroread.505 folder).

- 6) Insert dongle in USB port. System reboot may be required.

If PASS/EQUIP software was purchased through OOO "NTP Truboprovod" dealers, a registration form must be sent in to activate the dongle. After receiving a dongle update string, dongle update program must be run to activate the dongle (see 2.5).

2.4. Network key (dongle) installation

A dongle can be placed both on the server and on any network computer, including computer with installed PASS/EQUIP. If the dongle is supposed to be placed on computer with installed PASS/EQUIP, it shall be done as per i.2.3. This section describes installation of dongle on separate computer (server).

CAUTION! During program installation the dongle shall NOT be inserted in the port, to avoid its damage.

To install the network key (dongle):

1) Log in with rights of administrator.

2) Check system clock truth. Wrongly set system time may lead to impossibility of working with the dongle.

- 3) Install data storage device with distributive.
- 4) Run file Redistr\Sentinel\ SPNComboInst_7.6.9.exe.
- 5) Follow all the instructions of the installation program.

To complete installation of dongle driver, system reboot may be required.

6) Insert dongle in USB port

2.5. Software protection against unauthorized use

PASS/EQUIP software is protected from unauthorized use. While PASS/EQUIP is running, some modules check for presence of dongle and, if dongle is absent, the software is switched to demo mode.

There are two types of dongles: local and network (network dongle can be supplied when purchasing 2 or more licences).

Local dongle authorizes the software on the PC where the software is installed. It is possible to run several copies of the application on the same PC.

A network dongle authorizes the software for use on any PC within the local network. Maximum number of copies that can be run at the same time is controlled by the dongle and is equal to the number of licences purchased. A network dongle can be inserted in any computer on the local network (for instance, the server). Dongle drivers must be installed on the same computer. Dongle software uses TCP/IP protocol for network access.

Dongle Setup		
⊙Local PC		
◯ Any available		
O Server:		
192.168.33.63 ▲ 192.168.33.24 ■ 192.168.33.23 ■ 192.168.33.83 ■ 192.168.33.90 ■ 192.168.33.118 ■ 192.168.33.27 ■ 192.168.33.20 ▼		
O Specified:		
ОК		

Fig. 2.2 Dongle setup

You can choose which dongle type the software will use:

- **local** a local PC dongle will be used;
- server a dongle on a specific PC (defined by IP-address) will be used;
- **Any available** any available dongle will be used (local dongle will be chosen if present).

Dongle setup dialog box (Fig. 2.2) is opened by clicking "Setup" or selecting **Settings** \rightarrow **Customize dongle access** from the menu. Local dongle is selected by default. If no dongle is available, software will run in demo mode. If a network dongle is placed on the PC where the software is installed, the PC's network address must be specified ("Local PC" setting cannot be used).

To activate dongle or change its settings in case of license renewal or a change in license details, use *KeySt.exe*, which can be opened from **Start** \rightarrow **Programs** \rightarrow **Passat** \rightarrow **Dongle Update.** A dialog box will open:

🔨 Dongle update 🛛 🛛 🔀		
Dongle state string		
CRDYJREFBZHUDWGMEBDHKNRRIITNJJJJSSIIIEKJ Save		
Dongle		
S/N 2635 Ver 2		
Program		
Gydrosystem		
PASSAT		
Nozzle-FEM		
Module		
Nozzle		
Columns		
Dongle renewal string		
Load Update dongle		
·		
OK		

Fig. 2.3 Dongle update

To activate or update dongle, the code displayed in **Dongle state string** must be sent to PASS/EQUIP team. This code can be saved in a file by clicking **Save**, and then sent e-mail.

The code will be different every time the program is launched and can't be used repeatedly.

PASS/EQUIP team will provide a new code, which must be entered into the **Dongle renewal string**. The code can also be loaded from a file by clicking **Load**. When finished, click **Update dongle**.

You can check network key status, number of available licensed places and clients currently occupying a licensed place by running "Sentinel License Monitor". "Sentinel License Monitor" can be run from a server computer by opening a web browser (e.g. Internet Explorer) and entering the url http://localhost:6002/ (default port is usually 6002). To run "Sentinel License Monitor" from another a client computer, "localhost" should be replaced with the name of the server computer. JAVA runtime environment installation may be

required for the browser used in order to perform this operation (which should happen automatically if the computer is connected to the Internet).

2.6. Installation using Active Directory (AD) technology

Microsoft Windows Server 2003 and Microsoft Windows Server 2008 include integrated set of directory services Active Directory, constituent part of which Is Group Policy. Snap-in Software Installation, being part of Group Policy, provides remote installation of software on several workstations simultaneously.

Active Directory includes three (3) main installation scenarios:

- (Publish to User)
- (Assign to User)
- (Assign to Computer)

Attention!

- Software installation on the workstation will be finished only after reboot of the workstation.
- Software installation by scenarios Publish to User and Assign to User is not supported.

Software installation on the group of computers starts from creation of administrator setup. You can create this setup using ORCA MSI Editor. This program creates from file *.msi file setup.mst, which will save all changes introduced by administrator. Please find below the parameters, which are recommended to be adjusted before creating of mst-file:

Table	Parameter	Description
Directory	INSTALLDIR	Name of folder, where program files will be copied.
Directory	SHELL_OBJECT_FOLDER	Folder name in Start menu
Property	Mode	Dongle operating mode: 0-local; 1-any available; 2 - by specified address [Server].
Property	Server	Name of address of the server, which contains the dongle.

Property	ProductLanguage	Code of language, on which the program interface will displayed at the first start. By default 1049 (Russian)
----------	-----------------	--

Full program version is installed by default. Parameters Mode and Server inscribe dongle parameters into the branch of register HKEY_LOCAL_MACHINE\SOFTWARE\PSRE LTD\PassatXX\Settings.

After program installation, you should install dongle drivers for correct interaction with the dongle on local computers.

3. Working with PASS/EQUIP

Software interface conforms to standards for Microsoft Windows applications and is based on standard dialog components of Microsoft Windows (menus, toolbars, dialog boxes, input fields, etc.); therefore, working with PASS/EQUIP should be intuitive for any Windows user.

3.1. Geometric kernel, solid model generation

Starting from version 2.08, the program uses geometric kernel C3D developed by C3D Labs Company. This kernel provides an automatic creation of highdetailed solid model of vessel (creation of reinforcing pads, fillets, cutting holes in the shells, etc.), and its export to popular solid modelling systems. The following formats are currently supported:

- ACIS
- IGES
- Parasolid
- STEP
- C3D
- JT
- VRML
- STL

However, creation of solid models also places additional demands on the system performance. With the lack of operating speed of the program, you can use "Quick rebuilding of model". Comparison of modes is indicated in the table below:

Icon	Mode	Function description
	Without rebuilding	Model rebuilding is not performed during changes. This mode is recommended for use with similar editing operations in the number of components.
8	Accelerated model generation	In edit mode a solid model is built with some simplifications. Some components are displayed through OpenGL (bolts, heat exchanger tubes, trays, etc.). Reinforcement pads of nozzles are created by cylinder projecting, which at visualization may give significant distortions for tangential nozzles. For model rebuilding, an additional memory is required (500-1000 MB, depending on the model complexity). This mode is recommended for

	use for developing and editing of middle complexity models (50100 components).
Fine model generation	At editing, the solid model is built with maximum level of detail; reconfiguration may take a significant amount of time. All components are created as solid ones, with holes, fillets, etc. Reinforcement pads of nozzles are created by offset of the intersection line equidistant along the shell, which requires additional calculations. This mode may require additional memory (1-2 GB, depending on the model complexity). This mode is recommended for simple models editing.

Note: At calculation or export, the model will be automatically rebuilt in precise mode, if it hasn't been activated earlier.

3.2. Program model types

3.2.1. Horizontal vessels

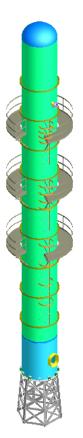
Fig. 3.1 Horizontal vessel model

Vessels of this type are usually installed on saddle supports. Model of horizontal vessel is formed from the components specified in i...3.9. Axis z is placed horizontally, along the vessel casing.

Loads calculation methods available for horizontal vessels:

Load		
Seismic	Wind	Snow
GOST 34283-2017	GOST 34283-2017	It is taken into account by
GOST 55722-2013		the specific load on the service platforms (total
STO-SA-03-003-2009		pressure of snow, materials
AzDTN 2.3-1 (AZE)		and other loads) or the load on the shell distributed
IS 1893 (IND)	IS 875 (IND)	along the length
EN 1998 (EUR)	EN 1991-1-4 (EUR)	
CFE 2015 (MEX)	CFE 2020 (MEX)	
ASCE 7-16 (USA)	ASCE 7-16 (USA)	
Inertial loads		

3.2.2. Vertical vessels



Vertical vessels are installed on the landing pads or leg supports of different types. Axis z is placed vertically, along the vessel casing.

Methods for calculating loads available for vertical vessels are similar to the section 3.2.1.

Fig. 3.2 Vertical vessel model

3.2.3. Column vessels

Vertical vessels, which are installed on the skirt support. For calculating of this vessels type, a license for "Passat-Columns" module is required.

Fig. 3.3 Column vessel model

Loads calculation methods available for column vessels:

	Load	
Seismic	Wind	Snow
GOST 34283-2017	GOST 34283-2017	It is taken into account by

GOST 24756-81	GOST 24756-81	the specific load on the service platforms (total
AzDTN 2.3-1 (AZE)		pressure of snow, materials
IS 1893 (IND)	IS 875 (IND)	and other loads) or the load on the shell distributed
EN 1998 (EUR)	EN 1991-1-4 (EUR)	along the length
CFE 2015 (MEX)	CFE 2020 (MEX)	
ASCE 7-16 (USA)	ASCE 7-16 (USA)	

3.2.4. Vertical tanks

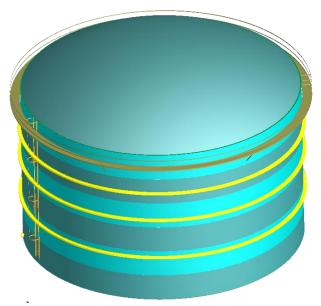


Fig. 3.4 Vertical tank model

Vertical filling tanks designed for storage of large volumes of product, with a flat head in the base.

For vertical cylindrical tanks a responsibility class shall be specified additionally, as well as snow area and turnaround of stored product with service life.

Loads calculation methods available for tanks:

Load			
Seismic	Wind	Snow	
SP 14.13330.2014	SP 20.13330.2016	SP 20.13330.2016	
AzDTN 2.3-1 (AZE)			
ASCE 7 (USA)	ASCE 7-16 (USA)	ASCE 7 (USA)	
	API-650 (USA)		
CFE 2015 (MEX) CFE 2020 (MEX)			
IS 1893 (IND)	IS 875 (IND)		
EN 1998 (EUR)	EN 1991-1-4 (EUR)	EN 1991-1-3 (EUR)	

3.3. Creating, viewing and saving input and output data

Input data is in PASS/EQUIP format files with the following extension:

*.pst_horiz – for horizontal vessels;

```
*.pst_vert – for vertical vessels;
```

 $I :_{pst_col} - for columns.$

*.pst_tank – for vertical tanks.

The name of the active file is displayed in the title bar.

To create a new data file, use the **Create** \square command in the main menu or toolbar.

The new file will be create after it is saved for the first time. The **Save** command will work as **Save as** for a new file.

To save the active file, select Save in the main menu or toolbar.

To save the file with a new name, select **Save as** in the main menu. If required, an appropriate file will be created, opened and will become a current data file for the program.

When saving, a file type can be changed now, i.e. vertical model or column can be saved as horizontal model for calculations of tests in the horizontal position

on the saddle supports. Not all of components can be saved in the new type of model, and appropriate notification will be displayed. If the mode type is changed, the saved file wouldn't become a current file.

To open an existing file, select **Open** in the main menu or toolbar.

To properly view images and mathematical equations, Internet Explorer must be set to display pictures(Service \rightarrow Internet options \rightarrow Advanced \rightarrow Multimedia \rightarrow Display Pictures).

3.4. Software window

The following window will appear when PASS/EQUIP is launched:

Ø PASSAT 2.09	- O X
<u>File View Options H</u> elp	
D 🛱 🖟 (◇ × 🖕 X 🖾 🖩) ♥ ♥ 🗐 🖬 🔘 🖬 🖬 I. 🗍 🗗 🗗 🗗	Ø Ø 🖗 👘
<u>■</u> • • • • • • • • • • • • • • • • • • •	
2010	
2010	
2010	
• *	
Press F1 for help	NUM SCRL

Fig. 3.5 Program window

To start, select **File** from the menu. Select **Create to open a new file or** Open **to open an existing one** (or use appropriate \square and \bowtie icons).

A recently used file can also be opened from the **File** menu option. The number of available recent files is set in "**Document Options'**" (see 3.11).

Vessel type must be selected before creating a new file (Fig. 3.6). Columns will be available only if **PASS/EQUIP-columns** module is licensed, or when working in demo mode.

New	
New apparatus Horizontal vessels and apparatuses	ОК
Vertical vessels and apparatuses Column vessels and apparatuses	Cancel
Vessels-tanks	Help

Fig. 3.6 Vessel types

When vessel type is selected or when an existing file is opened, a table containing general vessel data, data on the vessel's internal environment and analysis methods in test state will be displayed (Fig. 3.8).

After you press "OK", a work screen with a graphic view and toolbars containing all basic commands will be displayed (Fig. 3.7).

Graphic display of model is located in the middle of the screen. The symmetry axis of the model runs along the Z axis.

Icons in the right column of the screen are used for creating new model components.

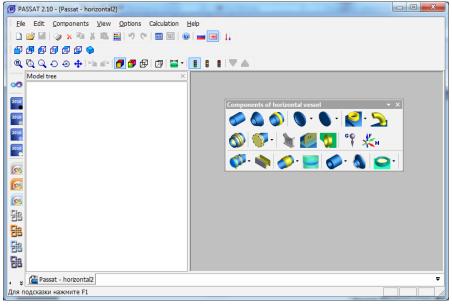


Fig. 3.7 Model window

When creating vertical cylindrical tank, a dialog for input data editing is opened automatically (i. 3.17.55).

3.5. General data

Dialog of general data includes main parameters of the vessel and its environment, information of its internal medium, types of calculation, etc.

General data					:
General Wind loads Seismic a	and inertial loads				4
Loading cases					
Loading case	Operating fluid name		Operating fluid density ρ, kg/m³	Number of cycles, N	
Operating	Water		1000	1000	Add
Steaming	Steam		12,7	1000	
					Delete
Fluid filling			Sulfurated hydrogen f	fluid	
🔾 Gas 🛛 💿 Liquid			Sulfurated hydrog	en fluid	
Filling ratio		•	Vessel grou	p as per GOST 34233.10: I	• >>
Filli	ng ratio, ξ: 100 %		Limit temp. o	f the operating fluid corr. acti	vity, tnp: 250 °C
Operating fluid group as per CU TR 032/2013: I ->>			Low-cycle fatigue	calculation	
Testing Test pressure calo				ment evaluation (MDMT)	
Test pressure calculation: GOST 34347, hydro			Calculate MDMT	ment evaluation (MDMT)	
✓ Inclusion of static head in th	· · · · · · · · · · · · · · · · · · ·			owest expected material temp	erature: -48 °C
	of test: Hydrotesting	•	Use to compute the MDMT: P[design] MAWP		
	ressure: 1 MPa		No UG-20(f) exem	-	[design] () MAWP
No corrosion in the test	1				
Insulation				Base elevation,	Y
Insulation data				base elevation,	Xoch: 0 mm
			Consider internal t	temperature loads (ɑ ·∆T)	
				emperature loads (d' 21)	
	ОК			Cancel	

Fig. 3.8 General data

Parameter "Operating fluid group as per TR CU 032/2013" is designed to estimate the vessel category on the basis of this regulatory document.

If test state analysis is selected (in this instance "Hydrotesting"), all components will be analysed both for operation state and hydraulic test state with specified test pressure.

Liquid density and its fill factor (when using "Vessel carrying fluid") must be entered in order to calculate weight properties of vessel components in operation state. Vessel fill can also be set through fluid volume or fill height. The "Load Cases" table allows to define several operating modes that will be simulated within one calculation. The loading case is characterized by the name, the name of the operating fluid and its density. The filling for all loading cases is considered uniform (to speed up the computing process), but the density of the operating fluid is assigned individually. This allows you to simulate various filling cases (working in steaming mode, etc.).

"Corrosion is not taken into account in the test calculation" enables to exclude a corrosion allowance (c_1) at calculations of all model components in test conditions, if they are performed for a new vessel.

"Calculation of test pressure" allows showing the code, under which a test pressure will be calculated.

"Inclusion of static head in the test pressure calculation" allows you to control subtraction of hydrostatic head pressure (pH), when evaluating a hydrotesting pressure. This item has appeared, because today there is no clear definition of the "test pressure" concept. In hydrotesting conditions, different components are subjected to different pressures (depending on the height of water). If, under test pressure, we assume pressure without hydrostatic one ("according to the upper gauge"), then in order to obtain pressure under hydrotesting conditions for a vessel component calculated in accordance with GOST, the test pressure shall be reduced by the hydrostatic pressure value. Otherwise, you can get an excessive pressure for the head.

"Inclusion of static head in the design pressure" allows you to control the influence of the static head on the design pressure (p) when evaluating the test pressure (ptest). This item has appeared due to discrepancies in the regulations regarding the determination of the design pressure (p).

"Hydrogen sulfide environment" must be selected when analyzing vessel components operating in corrosive hydrogen sulfide environments.

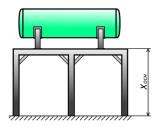
"Low-cycle fatigue analysis" must be selected for analyzing vessel components operating under cyclic loads where the number of cycles is between 10^3 and 10^6 .

"Insulation calculation data" allows setting parameters, according to which calculation of thermal insulation for components will be performed (see. i.3.9).

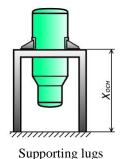
"MDMT" (Minimum Design Metal Temperature) option allows you to assess the suitability of the material and the need for additional testing in accordance with the selected standard for each component. When this option is activated, a cell appears in which the user must enter the minimum temperature value at which the vessel can operate (based on the technological process or climatic data). The option "Taking into account internal temperature loads" allows, when solving a beam model, to take into account loads due to thermal elongation of elements (with a rigidly clamped model or using non-standard fastenings).

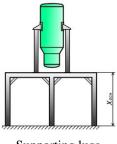
3.6. Wind loads

The value of the natural period (T) is used in the calculation of wind and seismic loads for horizontal and vertical vessels. It can be calculated automatically or entered manually for each load case. The natural period of the vessel body is implied. Minor sections of the model (eg piping, internals) may have a lower oscillation period, but these values should be excluded from the analysis.

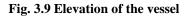

If "Calculation of vortex resonance" is selected, the chances of resonance and structure strength, if such resonance occurs, will be determined. This item is recommended for free-standing smooth and high structures, i.e. chimneys. In other cases, its activation may lead to excessively conservative assessment of strength.

3.7. Seismic and inertial loads


The "Allowance for seismic and inertial loads" option is required for calculating vessels taking into account loads due to seismic effects. This calculation is available for the PASSAT-Seismic, PASSAT-Columns, PASSAT-Tanks modules. It is necessary to select the standard according to which the loads will be calculated.


3.8. Elevation (height) of the vessel

This option provides consideration for the presence of any building structure under the vessel, which leads to an increase in wind and seismic loads.



Horizontal vessel on saddle supports

Supporting lugs welded poles

3.9. Insulation calculation data

Specified properties are used for calculation of parameters of calculation of component thermal insulation (i.3.17.1.10)

Insulation data Stationing: Outside Select location: From database Country	×
Select location: From database	•
Select location: From database	•
	•
Caustan December 2010 second com	
Caustrus Concentration of the second	
Country:	•
Region:	•
City:	•
Search by: Find	1
Average temperature	_
Mid-annual: 4,3	°C
Average maximum of the warmest month: 24,1	°C
Average temperature of the coldest five-day period: -27	°C
Average monthly relative humidity of the warmest month: 71	%
Insulation project:	
ROCKWOOL + Steel sheets	-
OK Cancel	

Fig. 3.10 Insulation calculation data

Parameter "Project of insulation" is the name of the package of rules, according to which insulation components are selected.

3.10. Main menu

The Table 3-1 briefly describes all available main menu items.

Menu i	item name (icon)	Function		
"File" s	"File" submenu			
	New (Ctrl+N)	Create a new file		
2	Open (Ctrl+O)	Open an existing file (with *.pst extension)		
	Close	Close active file		
	Save (Ctrl+S)	Save active file		
	Save as	Save active file with a new name		
X	Export to XML	Export model to XML file		
<u>*</u>	Export to Nozzle FEM	Exports nozzle data to a "Nozzle-FEM" file.		
	Export to C3D, IGES, STEP, ACIS, ParaSolid, JT, VRML, STL	Saves solid model of vessel to one of formats		
X	Import from XML	Import model from XML file		
	Import from XML MechaniCS	Import model from XML MechaniCS file		
	Exit (Alt+F4)	Exit program		
"Edit"	"Edit" submenu			
S	Undo (Ctrl+U)	Cancel the last command		
e	Redo (Ctrl+R)	Redo the last cancelled command		
<i>></i>	Edit (F4, double click)	Edit model components		
×	Delete (F8, Delete)	Delete model components		
	Copy (Ctrl+C)	Copy selected component to clipboard. All component data except name will be copied as		

Menu	item name (icon)	Function
		well. Sub-components will not be copied.
¥	Cut (Ctrl+X)	Similar to copy, but after being pasted, the original component will be deleted (after user's confirmation)
*	Paste (Ctrl+V)	Paste copied component into the model. If an component is selected at this time, the new component will be adjoined to it. If no components are selected (or if selected component has several possible joint locations), you will be asked to specify the new component's joint location.
	Change color	Adjust display color of model components

Menu item 1	name (icon)	Function

Menu item name (icon)	Function

Menu item name (icon)	Function
"View" submenu	
Toolbars	Turn on/off the following toolbars: View (3D model view options), Standard views (common vessel model views), Components (components which can be added to the model), Themes (change interface styles).
Settings	Adjust interface and toolbars and set hotkeys.
Status bar	Turns status bar on/off.
"Options" submenu	
Units	Set measurement units used for dimensions, load properties and material properties.
General data	Display (and edit) general model data.
Customize dongle access	Displays network or local dongle settings

Menu	item name (icon)	Function	
Settings		Displays software settings	
	Language	Change interface and output language (Russian or English).	
11	Components temperatures	Provides setting of calculation temperatures simultaneously for several components of the model	
—	Components insulations	Provides setting of thermal insulation parameters simultaneously for several components of the model	
"Calculation" submenu			
Ħ	Vessel calculation (F3)	Run calculation and produce output file	
E	Converting to WORD (Ctrl+W)	Create output report in RTF format (MS Word).	
"Help"	"Help" submenu		
0	Help	Open help file.	
P	Check for updates	Runs an integrated automatic update system.	
	About Passat program	Display software version, support contact e-mail and copyright information.	

Components library			
	Cylindrical shell		Cylindrical jacket
0	Conical transition		<u>U-shaped jacket</u>
	Ellipsoidal head		Partially jacketed vessel
	Spherical head		Half-pipe coil jacket
	Torispherical head		Half-pipe battery jacket

	Flat conical head (α >70°)		Jacket with longitudinal
Ă	<u>Steep conical head (α≤70°)</u>		<u>channels</u> <u>Ellipsoidal bulk</u>
	Spherical head without knuckle		Spherical bulk
Š	Flat head (cover)		Torispherical bulk
	Flat head with ribs		Virtual bulk
Ő	Integral flat heads with opening		Ellipsoidal transition
	Oval head		Expansion bellows
2	Nozzle		Heat Exchanger with stationary tubesheets
2	Oval nozzle	n	Heat exchanger with U-shaped tubes
5	Bend		Heat exchanger with floating head
Ì	Saddle support ^{a)}	*	Air-cooled heat exchanger
Or I	Bracket supports a)	2	Nozzle (tie-in) to air–cooled heat exchanger
0	Stiffening ring		High pressure cylinder
	Stiffening rings group		Ellipsoidal high pressure head
	Flange joint		High pressure flat head
	Reversal flange		Spherical unbeaded high pressure head
	Bolted flat head		Bolted high pressure flat head
S	Bolted ellipsoidal head		Bolted high pressure spherical head
0	Bolted spherical head without knuckle		High pressure flange joint
4	Bracket supports ^{b)}		High pressure bend

1	Supporting legs ^{b)}	2	High pressure nozzle
	Supporting lugs ^{b)}		Packing ^{c)}
Η	Supporting legs on the shell ^{b)}	P	Service platform
	Supporting ring ^{b)}	III	<u>Tray block</u> c)
C"	Lifting lug		Skirt ^{c)}
	Joining pad	0	Viewing window in the boss
¢,	<u>Trunnion</u>	0	Viewing window in the nozzle
CO	Lumped mass	0	Flanged boss
*	External loads	n	Vessel assembly
	External distributed loads	8	Rigid link
÷ 🖞	Vessel fixing	+	Custom equipment
	<u>Structure</u>		Non-circular component
^{a)} for ho	rizontal vessels		
^{b)} for ve	rtical vessels		
^{c)} for co	lumn vessels		

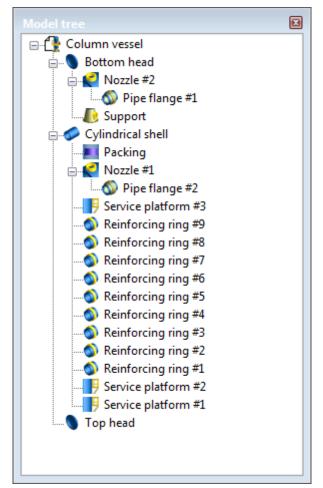
"View" and "Standard views" toolbars

The Table 3-2 describes the functions of the "View" and "Standard views" toolbar icons.

Table 3

Icon (name)	Function
Front view	Full-screen model display in Z-Y plane (X-axis pointed away from screen).
Back view	Full-screen model display in Z-Y plane (X-axis pointed toward screen).

Icon	(name)	Function
Ø	Left-side view	Full-screen model display in X-Y plane (Z-axis pointed away from screen).
Ø	Right-side view	Full-screen model display in X-Y plane (Z-axis pointed toward screen).
Ø	Top view	Full-screen model display in Z-X plane (Y-axis pointed toward screen).
Ø	Bottom view	Full-screen model display in Z-X plane (Y-axis pointed away from screen).
9	Isometric view	Full-screen isometric model display.
	Fit to the screen size	Full-screen model display in current view.
0	Zoom in	Zoom in using the left mouse button.
	Zoom in/zoom out	Zoom in/out by moving the cursor up or down using the left mouse button.
Q	Rotate around axis	Rotate model around axis by holding down the left mouse button and moving the cursor.
۲	Rotate around selected point	Rotate model around selected point by holding down the left mouse button and moving the cursor.
4	Move	Move model using the left mouse button.
6	Cancel view	Return to previous view (before rotation, zoom, moving).
đ	Repeat view	Repeat cancelled view change (rotation, zoom, moving).
	Solid	Display model as a solid, 3D object.
	Gradient	Display model in gradient (semitransparent) mode.
Ø	Beam	Display model as transparent beam.
ø	Display filling	Display of calculated filling as translucent volume
	Insulation and lining view	Display of created volumes of insulation and lining
P	Display service plaforms	Display or hide sites existing in the model
-	Colors by materials	Highlighting of components by color according to the "Materials using" panel
ø	Perspective view	Display model in perspective view
=== -==	Dimensions	Display dimensions of model components


User's Manual

Icon	(name)	Function
	Elevation labels	Display elevation labels of shells, nozzles and platforms, stiffening rings
įŦ	Product level marks	Display product level marks by cavities
92	Labels	Display model with component labels
*	Origin point	Display origin point of solid model (relating to it, barycenters of components are calculated)
	Fine generation of model	The solid model is created in detail that can retard the work in case your computer is too slow.
8	Accelerated model generation	Some components of solid model are created more simply.
	No model rebuild	Model rebuilding is blocked.
~	Regenerate model	Forced rebuilding of the model with the elimination of artifacts left over from previous incomplete rebuilds
-	Moving down of the component in the current branch $(Ctrl+\downarrow)$	Changing position of the selected component in the model hierarchy relating to the components
	Moving up of the component in the current branch (Ctrl+↑)	of the same level. This option is available only for daughter components (nozzles, rings, etc.).

For quick move \bigoplus , zoom \bigcirc and rotation \bigcirc of the model, you can also use left, right and middle mouse buttons, respectively, while pressing the "*Ctrl*" key. To rotate the model around a selected point \bigotimes , you can use the right mouse buttonwhile pressing the "*Ctrl*" and "*Shift*" keys together.

When rotating the model around a selected point \bigotimes , X and Y coordinates (in the coordinate system of the screen) are determined by the mouse cursor position, while the Z coordinate ("depth") is determined by the current depth of non-transparent model component under the mouse cursor. If no non-transparent components are present under the mouse cursor, Z coordinate is set as equal to model's average depth.

3.11. Model tree

Fig. 3.11 "Model tree" Toolbar

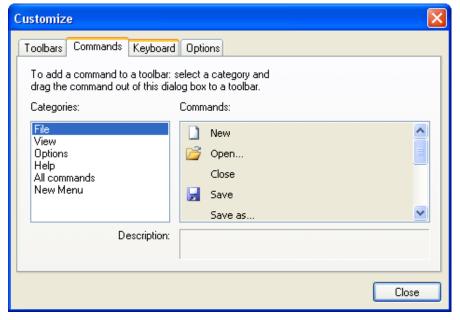
A model tree is designed for a visual presentation of model structure and quick navigation. Elements of model are represented as scaled-down icons with names. The icons are interactive and have a pop-down menu. So, they provide easy access to component editing commands. A top-most component with model file name provides general data editing.

3.12. Materials using

Materials using ×		
Material	Color	Quantity
06ХН28МДТ		37,74 kg
07X13AF20 (4C-46)		25,71 kg
08X18F8H2T (KO-3)		722,4 kg
09Г2		87,22 kg
12MX		1336 kg
12X18H10T		37,28 kg
12X18H12T		19,68 kg
Кирпич		2388 kg
Мин. вата		1,332 kg
СтЗ		498,2 kg

Fig. 3.12 "Materials using" panel

This panel is designed for the rapid material consumption assessment. It displays a list of materials used in the construction, colors of materials used in EColors by materials' mode, and the estimate of the mass of each material in accordance with a given density. Mass is displayed in units that have been selected in the "Dimension" dialog. If the density of the material is unknown, or set zero, the item is considered to piece goods, and in the "Quantity" column shows the number of parts (eg, gaskets).


3.13. Themes toolbar, customization of toolbars and menus

Program has the ability to switch PASS/EQUIP interface style can be adjusted. To do this, choose the style in themes toolbar.

If the themes toolbar is hidden, you can enable it via View \rightarrow Toolbars \rightarrow Themes toolbar.

In addition, you can customize toolbars, add or remove toolbar buttons, and create new toolbars in **View** \rightarrow **Customize**.

Fig. 3.13 Customization window

When customization window displayed, you can drag and drop. Desired toolbar buttons and menu commands with the mouse can be selected in the customization window by dragging and dropping.

3.14. Software settings

To show PASS/EQUIP settings, select "**Options**", then click submenu "**Settings**". The settings dialog box includes the following tabs and commands:

Program settings	Program settings ×
General Colors Image quality Update 4 0	General Colors Image quality Update 4 b
General Colors Image quality Update Image quality Number of items Recently opened files": Image quality Image quality Number of significant digits when rounding off: Image quality Image quality Image quality Number of significant digits when rounding off: Image quality Image quality Image quality Drop-down toolbars Scientific notation digit: Image quality Image quality Show the finite element model Save the component name when copying/pasting Image quality Solid model export Image quality Image quality Image quality Geometric kernel mode Image quality Image quality Image quality Standard multithreading Image quality Image quality Image quality	General Colors Image quality (Update) 4 System colors Dimension marks color Component marks color Filing color Edit Component colors by default Confordal head Elipsoidal head Flat conical head Flat conical head Elipsoidal head
Calculation of filing volume tolerance: 1 %	
OK Cancel Apply	OK Cancel Apply
Program settings	× Program settings ×
	General [Colors [Image quality Update 4 Automatically.check for updates] Automatically.check for updates Automatically.check for updates Automatically.check for updates Jostfy me when updates are available but need to update the dong Update server URL: http://www.truboprovod.ru/update/ Use Proxy-server Server type: Server address: Port: Ouse name: Password:
OK Cancel Apply	OK Cancel Apply

Fig. 3.14 Software settings

"General" tab	
Number of "Recently opened files"	Set the number of recent documents to be shown in the "File" menu.
Number of digits when rounding	Set the maximum number of digits when rounding numbers in output. For example: if this value is set at "3", 1032.37 will be printed as 1030.
Minimum number of digits for scientific notation	Set the minimum number of digits when scientific notation should be used. For example: if this value is set at "4", 10320 will be printed as $1.032 \cdot 10^4$, while 1270 will be printed as is (depending on rounding; see above). Note: for numbers with notation of less than 10^3 and greater than 10^{-1} , this setting is ignored.
Recent command is displayed in the toolbar	Set recently used command to add model component as default command in the toolbar.
Show finite element model	While working with PASS/EQUIP, the model can be shown as a finite element beam model. This model provides better control over software functions, but can slow down software operation.
Show model fill	Calculated model fill will be indicated by colored dots
Filling calculation (Faster - Fine)	PASS/EQUIP program implements calculation of vessel filling based on a statistical method of calculation of the volume integral, when the model is filled with randomly generated points (Monte Carlo method).This setting controls the number of generated points.The more points, the better the result, but the calculation is longer (in the fastest mode, the accuracy is ~5%).
Export insulation and lining	Establishes, whether there is a need to include insulation and lining, when exporting solid

The Table 3-3 describes the options available within the tabs of the settings dialog.

	model. If lining is set as a plating (Fig. 3.27), it will be always exported.
Export fasteners (bolts, nuts)	Establishes, whether there is a need to include fasteners (bolts, nuts, studs, etc.), when exporting solid model
Geometric kernel mode	Includes multi-threaded mode of operation of some functions of geometric kernel. Working with the model in multi-threaded mode is faster, but in some (rare) cases, the program may fall.
Accuracy control parameter	A numerical value that controls the accuracy of the mathematical functions of the geometric kernel in the construction and calculation of mass-dimensional characteristics. The higher the value, the faster and more accurately the calculation is performed
Accuracy of calculation of filling volume	A value of the relative error of calculation of the filling, when selecting option "Calculation by the specified volume of product." For example, at a value of 1% and specified target volume of 1000 liters, the calculation will be considered successful, if it gives any value in the range of 990 to 1010 liters. A small relative error can extend the calculation for a complex configuration of cavity of the vessel (heat exchangers, etc.)
Materials DB	Allows you to configure the path to the database of user materials located in the centralized access (for example, on a network drive), or use a local database (by default)
"Colors" tab	
System colors	Customizes colors of view window elements
Element colors	Customizes default colors of model components. New model components will be created with this setting. To apply changes to components that were previously created, go to "Components"—"Change color"—"Default

	colors " or use the appropriate icon II .
"Image quality" tab	
Manual setup	Set image options manually.
Default	Use default values.
Smooth transition in view operations	If selected, changing to selected view (standard views and "Show window" function) is performed smoothly.
Dynamic view	Choose view during dynamic operations: moving, zooming and rotation: "Normal" – aligns with current view; "Beam" – beam model. May significant accelerate view operations on slow PCs. "3D box" –3D box circumferencing the model. Used on slow PCs.
Number of sections for circumferences	Set accuracy for displaying curvilinear surfaces (cones, spheres) by setting the number of sections.
Anti-aliasing	If selected, a full-screen image anti-aliasing is applied to correct imperfections. Requires a high-performance OpenGL video adapter.
"Update" tab	
Check for updates at each run	Automatically check for updates at the application run
Notify of updates, which require dongle updating	Notify of updates, which can be installed after dongle updating.
Use Proxy-server	Connect with updating server via proxy server (required, if Internet is launched via HTTP through the proxy server)

3.15. Software update system

Regular program updates provide user with the latest version of the software.

An update system can check for updates in automatic or manual mode, as well as download and install updates on PC.

For the proper work of the system a dongle is required. If the dongle is not available, check and installation of updates cannot be performed.

Check for updates is performed automatically at the program launch, or manually from Help \rightarrow Check for updates menu. Automatic check can be switched off in the parameter settings window, tab "Update", check button "Check for updates at each run".

Check and installation of updates is performed up to maximum allowed version number, which is specified in the dongle. Software update system can notify a user of the available updates to the latest versions, which are newer than those allowed by the dongle, if the following item is switched on: "Notify of updates, which require dongle updating" in the parameter settings window, tab "Update". If this message appears, such updates become available after the dongle update to the required version (see i. 2.4).

To install updates, system administrator's rights are required. There can be a request of UAC (Windows User Access Control system) about permission of install.exe launch during installation process. For proper updating, install.exe shall be launched with administrator's rights.

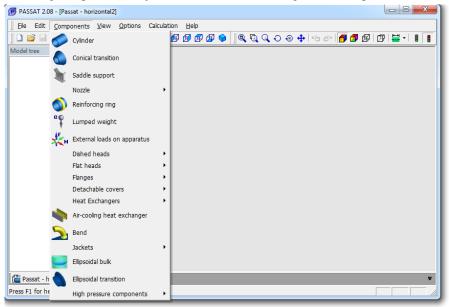
Proxy settings may be required for connecting to update server. The same proxy settings as in a web-browser should be set. In the case of Internet Explorer these settings can be found in the tab **Connections**—**Network properties** of the Internet Options. When being installed, the program offers to use as default settings for these options, installed in the system.

3.16. Measurement unit settings

Before creating a model (and at any other time), you can set dimension and load measurement units. Element properties are recorded using internal units by PASS/EQUIP and automatically re-calculated using these settings. The units selected in these settings are displayed in the output.

	when entering	data and ii	n the derivation of the calculation i	results. Units a	re set
for the current document					
Units					
Length	mm	•	Moment	N m	•
Diameter, thickness	mm	•	Temperature	°C	•
Area	m²	•	Angle	۰	•
Moment of inertia	m4	•	Density	kg/m³	•
Stress, pressure	MPa	•	Mass	g	•
Force	Ν	•	Velocity	km/h	•
Program default system	n of units	Int	ernational system of units (SI)		
English system of units (U.S.)		Gra	vitational metric system (MKS)		
Gravity acceleration, g — O Normal value					
O Tech value	9.807	m/s²			
User value			ОК		ncel

Fig. 3.15 Units settings


Measurement units need not follow the same measurement system (eg, diameter in mm and moment in N·m). Therefore, when viewing equations in output, the final result may not coincide with intermediate calculations, which does not constitute an error (M = 2 [N] * 1000 [mm] = 2 [N·m]). To avoid this, set units from the same measurement system (for example, all linear dimensions are in mm and moment in H·mm).

Buttons with systems of units are useful for quick assignment of the whole complex of dimensions used in the corresponding system.

The "Gravity acceleration" option allows more flexible adjustment of the weight, seismic and inertial loads calculation.

3.17. Data input

You can start building the model from a cylindrical shell or conical transition or from any head. First component is placed from zero position along Z-axis: from left to right for horizontal vessels and from the bottom up for vertical vessels. The following components are joined or inserted to existing model components.

Fig. 3.16 "Components" menu

After you select "**Components**" Add \triangleright (or press the corresponding icon in the right column of the screen), possible joint or insertion points are determined and you will be asked to select the desired joint or insertion location:



Fig. 3.17 Model building

After the new component is placed, a dialog with all required dimensions, materials and load properties data will be displayed. To input data, press "Enter" in the desired field. Element properties will then be recalculated if necessary.

Some options are common to different components and work in a similar way.

3.17.1.1 Component name

Set component name ("Cylindrical shell No..." is used by default). This name will be used during editing, deleting and assigning of adjoined components, and displaying output.

3.17.1.2 Code

Set the standard to be used for analyzing this component. When you change the selected regulatory documents, input data indications are changed as well, and their values are automatically recalculated if necessary. The code (normative document) can be assigned individually for each component, i.e. GOST 34233.2-2017 for shell and ASME VIII-1 for nozzle. At that, if during calculation the nozzle requires the shell parameters calculated as per ASME, they will be calculated, despite the shell code specified.

3.17.1.3 Temperature

Temperature, at which material properties in operation state are calculated.

3.17.1.4 Design pressure

Internal or external pressure in operation state. Does not include hydrostatic pressure of liquid, if present. Hydrostatic pressure for each component is calculated individually based on fill estimation. Excessive pressure with allowance for hydrostatics is calculated using the following rule (for external pressure p is negative):

 $p' = \pm p + \rho \cdot g \cdot h$, if p is internal, or if p is external but $|p| < |\pm p + \rho \cdot g \cdot h|$;

 $p'=\pm p$, if p is external and $|\pm p| \ge |\pm p + \rho \cdot g \cdot h|$.

3.17.1.5 Design values calculation

To calculate thickness, allowable pressure and other properties without existing the component properties window, use the "**Calculate values**" button. These parameters are defined more simply and approximately, without consideration for filling of the vessel, influence of the neighboring components, etc. The final result of calculation may differ from this value.

3.17.1.6 Material

Material selected from database (GOST 34233.1-2017, PNAE G-7-002-86, GOST R 54522-2011, ASME II Part D, EN etc.), or is set by user, where required properties at operating, test and assembling temperature $(20^{\circ}C)$ must be set.

Selection o	of material													×
Per	the reference	e GOST	34233.	1-2017 (\	/essels a	nd app	aratus	-	on of material				_	
		ст3						- P	er the fragmen				Fir	nd
									Per Ty	pe/Grade:			Re	set
Tv	pe of material								Per the mat	erial type:	All			•
		oteer							he material (ste	el) grade:	All			-
	(steel) grade	Curbe	onic					*	Per the workp	iece type:	All			-
Туре	e of workpiece	Pipe						-						
	Design life	: Desig	n life < :	100 000 h				-						
Th	ickness range	: <= 2	Омм					-						
Estima	- [-]			C 11					Design tempe	ratural -		_		
	properties at d			s of the wa	all: 10		mm	Material	properties at a			Ċ		
r lateriar p		-		sses, [ơ]:	154		IPa	- Internal			ses, [σ][20]:	154	MPa	
		Allowed		point, Re:			IPa IPa		Allor		oint, Re[20]:		мРа МРа	
		s		limit, Rm:	460		ira IPa				mit, Rm[20]:		MPa	
	Modulus o			sticity, E:	199000		IPa	M	Iodulus of longi				MPa	
	L	inear exp	pansion (factor, a:			/°C							
	Lor	ng streng	th limit,	Rm10^5:	0	M	IPa		Edit user r	materials >	>			
		Cre	ep limit,	Rp10^5:	0	Μ	IPa							
Show p	roperties table	e		OK			Сору	to clipboard]		Cancel			
T, °C	[σ], MPa		Re (Rp1	I.0, Rp0.2),	MPa	Rm	, MPa	E, MPa	α, 1/°C	Rm/10^5	MPa Rn	1.0/10^5, M	Pa	
20	154			250			460	199000	0.000011600					
100	149			230		4	435	191000	0.000011600					
150	145			224			460	186000						
200	142			223			505	181000	0.000012600					
250	131 115			197			510 520	176000	0.000012100					
300	105			173			480	171000 164000	0.000013100					
375	93			164			450	104000						
400	85			150			411	155000	0.000013600					
410	81			142			392							
420	75			132			363							
425	71			125		34	43.5							
450								140000						
500									0.000014100					
	actor A: 600	00	MPa		Facto	or Ct:	2300		Den	sity: 785	n ka	/m³		
Fa	000						2300				Ng Ng			

Fig. 3.18 Standard material properties

Material database consists of two parts: group of standard materials and group of user's materials. First group cannot be changed by user. To edit the second group, "Edit user's materials" shall be selected.

VESSEL STRENGTH ANALYSIS SOFTWARE

09F2C KF1245 09F2C(265)	Material name	: 09F2C KF12	45		Type of m	aterial:	Steel		
9F2C-2	Material (steel) grade: Low-alloy								
L.0566 P355NL1 <150мм L.0566 P355NL1 <40мм L.4404					Rupture elor	ngation:	Unknown		
1.4571 355NL2	Workpiece	Type/Grade	т,	Re (Rp1.0, Rp0.2), MPa	Rm, MPa	E, MP	a Alpha, 1	Rm/10^5, MPa	
A-240 304	Forging 💌		350	161	258	16400	0 0,0000136	0	
A-249 TP304L A333 GR6	Forging 👻		375	152	244	16400	0 0,0000136	0	
TSt35N	Forging 💌		400	138	220	15500	0 0,0000136	0	
	Forging 👻		20	245	378	19900	0 0,0000116	0	
	Forging 💌		100	210	336	19100	0 0,0000116	0	
	Forging 👻		150	202	323	18600	0 0,0000126	0	
	Forging 💌		200	194	311	18100	0 0,0000126	0	
	Forging 💌		250	190	304	17600	0 0,0000126	0	
	Forging 💌		300	176	281	17100	0 0,0000131	0	
	▼		1						
							Delete se	lected lines	
	Low-cycle strength Coefficient		MF		operties (*) De	ensity:	7800 kg/	m3	
Create Paste from dipboard	Coefficient	tB: 0			Poisson's				
Add copy Delete	Coefficient	·		(*) If "0",	substituted v				
	Minimum numbe	r of 0							

Fig. 3.19 User defined material properties

In the user's materials editor the following operations are available:

- Adding new "empty" material ("Create");
- Copying table of properties of any of the existing materials as a whole (the command "Copy to clipboard" in the table), and the subsequent insertion to the user material (command "Paste form clipboard");
- Deletion of material "highlighted" in the list ("Delete");
- Creation of the new material and copying into it the properties of the material, which is "highlighted" by the cursor in the list ("Add copy");
- Deletion of the group of lines with material properties ("Delete selected lines");
- Material renaming (the name of material is edited in the same field);
- Setting of material properties, depending on temperature, thickness, workpiece type, parameters Type/Grade and Class/Condition/Temper (by analogy with ASME II Part D).

After pressing "OK" button a new material will appear in the group "User's materials".

Material properties at given temperature are determined by linear interpolation. Data can be set randomly, depending on the temperature — the program will sort them automatically, in the order of temperature increasing. In addition to steel, cast iron, nonferrous metals and titanium alloys can be entered. A and B material properties and correction factor C_t are set for steel, non-ferrous metals, cast iron and titanium alloys when calculating low-cycle fatigue.

If some value is initially equal to 0, then at calculation in will be set automatically, as per GOST 34233.6-2017, based on the material type and grade.

When you add a new material, its properties are saved both in the database and in the model file. When transferring data file to another PC, PASS/EQUIP will read material data and add it to local database if necessary. If a material with the same name already exists in database, properties from the database and not the model file will be used.

In case of simultaneous access of several users to the publicly available database (for example, when it is placed on a network drive), only the first user can edit (for other users, a message appears about the impossibility of editing at the moment).

3.17.1.7 Standard dimensions

By this command you can select a component from standard items database via clarifying filters (from more general parameters to the particular ones)

3.17.1.8 Negative tolerance

By key you can select this value from database as per different standards. A user can select only those variants, which correspond to the defined nominal thickness of the wall.

Negative tolerance	×
Nominal thickness	: 10 mm
Code	: ГОСТ 19903-74 Прокат листовой горячекатаный. Сортамент 🗨
Ширина рулона	^c 500750 •
Точность прокатки	Нормальная точность прокатки
Negative tolerance, mr	4 0,8 mm
ОК	Отмена

Fig. 3.20 Negative tolerance

3.17.1.9 Weld strength ratio

This value is set based on weld type and materials used via $\xrightarrow{}$ button.

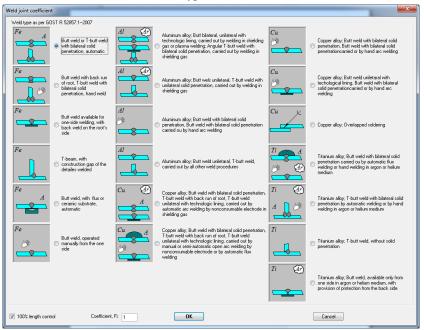


Fig. 3.21 Weld strength as per GOST

Selection of this parameter depends on the accepted calculation code. Ff calculation is selected as per ASME VIII-1, weld strength factors are assigned concurrently (Fig. 3.22).

Welding efficiency	X
Longitudinal joint radiography Full radiography per UW-11(a) Type 1 Full radiography per UW-11(a) Type 2 Spot radiography per UW-11(b) Type 1 Spot radiography per UW-11(c) Type 2 No radiography per UW-11(c) Type 1 No radiography per UW-11(c) Type 2 No radiography per UW-11(c) Type 2 No radiography per UW-12 Type 4 Seamless User defined Longitudinal efficiency: 1	Circumferential joint radiography Full radiography per UW-11(a) Type 1 Full radiography per UW-11(a) Type 2 Spot radiography per UW-11(a, 5, b) Type 1 Spot radiography per UW-11(b) Type 1 Spot radiography per UW-11(b) Type 1 No radiography per UW-11(c) Type 1 No radiography per UW-11(c) Type 2 No radiography per UW-11(c) Type 2 No radiography per UW-12 Type 3 No radiography per UW-12 Type 4 No radiography per UW-12 Type 5
OK	 No radiography per UW-12 Type 5 No radiography per UW-12 Type 6 User defined Circumferential efficiency: 1 Отмена

Strength reduction factor of welded joint	×
Butt/Corner/Tee: Radiographic or ultrasonic inspection 100% Butt/Corner/Tee; Radiographic or ultrasonic inspection 50% Butt/Corner/Tee; Radiographic or ultrasonic inspection 25% Butt/Corner/Tee; Radiographic or ultrasonic inspection not less than 10% Cr-Mo-V steel; Loaded with bending loads; Rolled pipe Cr-Mo-V steel; Loaded with bending loads; Centrfugally cast pipe, machined Circular seam of a cylindrical or conical shell, loaded with pressure Seamless component User defined	ОК
Cr, Cr-Mo-V steel	Factor, φ: 1 Cancel

Fig. 3.23 Weld strength as per PNAE G-7-002-86

3.17.1.10 Insulation and lining

In the presence of insulation, for automatic weight accounting, you should specify its thickness, as well as density or mass (for complex heterogeneous insulation). When assigning insulation, the program takes into account the change in the outside dimension of the component, when calculating wind loads.

Thickness and density of insulation can be selected from database according to the current regulations (Fig. 3.26, Fig. 3.27).

Insulation pa	rameters selection	Х
Standart:	СП 41-103-2000. Проектирование тепловой изоляции оборудования и трубопроводов	•
Region:	Европейский район РФ 🔻 Location:	•
Material:	Markala part - Spin a stratic carries and a stra	•
	Diameter: 18	•
	Temperature, °C: 50	•
	Thickness, MM: 22	•
	OK	

Fig. 3.24. Thermal insulation thickness selection

Insulation parameters se	election				×
	Standart: CI	П 41-103-2000. Проектиро	вание тепловой изоля	ции оборудования и трубопроводов	-
Type:	(ent)				•
	Material:	UNHINA MAN			-
	Applicability:	-70°C+70°C	•	Density, kg/m3: 50	-
		ОК		Cancel	

Fig. 3.25 Thermal insulation density selection

By selecting "Calculate" option, you can receive a lot of components of thermal insulation via the calculation module of the "**Insulation**" program. Input data for calculation are the geometric dimensions of the model component, its temperature, climatic parameters and project data specified in the dialog "Data for calculation of insulation" (i.3.9)

Insulation and lining	X
✓ Insulation	
Insulation name: <enter name=""> Insulation thickness, s(i): 0 mm Insulation density, ro(i): 0 kg/m3 Insulation density, ro(i): 0 kg/m3 Insulation density, ro(i): 0 resents under test conditions I Presents under assembling conditions I Facing of the inner surface I Lining Plating (two-layer steel)</enter>	
Lining name: <enter name=""> Lining thickness, s(): 0 mm Lining density, ro(): 0 kg/m3 OK</enter>	Cancel

Fig. 3.26 Non-metallic insulation and lining

Option "Presents in test/assembly conditions" influences on weight of the component and its outside ("wind") diameter in appropriate conditions.

In the presence of lining, for automatic weight accounting, you should specify its thickness and density.

For some components (shell, head), it is possible to take lining as plating (double-layer steel wall, Fig. 3.27). At that, the calculation takes into account the wall thickening and changes in allowable stresses.

Insulation and lining					\times
Insulation					
Insulation name: <enter r<="" td=""><td>name></td><td></td><td></td><td>U U U U U U U U U U U U U U U U U U U</td><td>¥¥</td></enter>	name>			U U U U U U U U U U U U U U U U U U U	¥ ¥
Insulation thickness, s(i): 0 Insulation density, ro(i): 0					∔ ∦
Presents under test condition	s			δα 	‡
Facing of the inner surface				- <u>""""""</u> -	C,
O Lining Plating (two-li					
Plating material:					
Ст3		>>			
Plating thickness, s':	0	mm			
Corrosion allowance, c1':	0	mm			
Negative tolerance, c2':	mm	>>	•		
Technological allowance, c3':	0	mm			
ок				Cancel	

Fig. 3.27 Insulation and lining suitable for plating

For tube sheets of heat exchangers, two-sided cladding with recalculation of the allowable stresses of the carrying layer is provided (Fig. 3.29).

Double-sided plating	×
☑ Inside plating	v 101,101,101
Plating material: 08X18F8H2T (KO-3) >>	
Plating thickness, s': 3 mm	
Corrosion allowance, c1': 0 mm	
Negative tolerance, c2': 0,8 mm >>	
Technological allowance, c3': 0 mm	
☑ Outside plating	,
Plating material: 07X13AF20 (4C-46) >>	
Plating thickness, s': 3 mm	
Corrosion allowance, c1': 0 mm	
Negative tolerance, c2': 0,8 mm >>	
Technological allowance, c3': 0 mm	
OK	Cancel

Fig. 3.28 Two-sided cladding

3.17.1.11 Low-cycle fatigue

For low-cycle fatigue analysis, load properties and weld type must be set, depending on adjoining nodes or vessel components.

Low-cycle fatigue calculation as per GOST R 52857.6-2007			
Assembly or element of vessel	Basic element material:	Adjacent element data	
	Dr3 *	Material: CT3	•
		Temperature, T2:	20 °C
		Thickness, s2:	0 mm
	_		
	Oper		0 MPa
		Force amplitude, DeltaFj:	0 N
Smooth shell	Ber	iding moment amplitude, DeltaMj:	0 N mm
Spherical part of dished heads without holes	Amplitude of temperature difference	e of two neighbouring points on	0 °C
Reinforcing pads	Amplitude of calculatio	the vessel wall, DeltaTTj n temperatures in junction points	
Weld edge displacement Junction of shells with different thickness		ls, with different linear expansion	0 °C
Junction of shells with different thickness Flat head or cover without holes		coefficients, DeltaT _{aj}	
Plat head of cover without holes Elliptic head			
Enippid read Description Enippid read Section			
O Shell with stiffening ring			
Raised part of torispherical head or conical shell	-Weld type or element connection-		
Raised flat conical head		hon hom	
Conical head without transition			The
O Junction with raised part of torispherical head or conical head			
 Flat head or cover with hole, tube grid 			$\sim + \sim$
Raised nozzles and access holes	 Seamless element 		
 Shell with nozzle without coupling ring 	O T-welds with full penetration a	nd smooth transition	
 Junction between conical shell and cylindrical shell of fewer diameter 	 Butt welds with full penetration 		
O Plane flanges welded to the shell	 Vessel welds with reinforcing p 		
Shell with nozzle with coupling ring		Il penetration without smooth transit	ion
Corner welds of conical or spherical shell	 Nozzle welds with reinforcing i 		on
 Connection between unbeaded conical shell and cylindrical shell Spherical cover with ring 	Reinforced butt weld	ing with ruli penetration	
Connection with shell of raised or grooved flat head	•	forcing plate, with lack of penetratio	on in the reate
Connection with shell of welded flat heads of other types		ing with constructive clearance	in in the looks
O Total roundness as per GOST R 52857.11-2007	Welds of skid boards	ing with constructive clearance	
O Dent as per GOST R 52857.11-2007	· · · · · · · · · · · · · · · · · · ·		
C Longitudinal weld deflection as per GDST R 52857.11-2007	Welds of flat welded flanges v	ing and constructive clearance	
O User defined Local stresses factor, eta: 15		lith constructive clearance	
	Welds of plane welded heads	F00F7 11 00070	
	 Shifted welds (as per GOST R 		· · · ·
	O User defined	Welding type	e factor, ksi: 1
ПК		Cancel	
214			

Fig. 3.29 Local stress factors

3.17.1.12 Defects according to GOST 34233.11-2017

If any defects are found, an additional analysis will be performed. Defect type and properties can be set via \longrightarrow button.

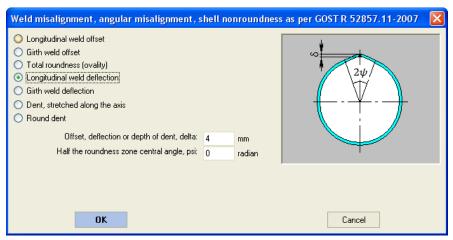


Fig. 3.30 Defects as per GOST 34233.11

3.17.1.13 Space in the component

In the simplest case, the vessel has one internal volume, and content properties are specified in the general data (Fig. 3.8). However, in some cases, the vessel has two or more isolated volumes (jackets, heat exchangers, vessels with separating walls). In this case, it is necessary to set parameters of filling of the subsidiary volume.

Filling parameters X								
Ellipsoidal bulk								
Loading case	Operating fluid name	Operating fluid density p, kg/m³						
Operating conditions		1000						
<		>						
Liquid filling O Gas Liquid								
Filling ratio		•						
	Filling ratio, ξ: 100	%						
Operating	fluid group as per CU TR 0	32/2013: I + >>						
к	ind of test; Hydrotesting	-						
Test pressure: 1.47 MPa Sulfurated hydrogen fluid Vessel group as per GOST 34233.10: I								
Limit temp. of the operating fluid corr. activity, tnp: 250 °C								
ОК		Cancel						

Fig. 3.31 Space in the component

This dialog works similar to the general data dialog (Fig. 3.8), but it is applicable only to subsidiary volume properties.

3.17.2. Cylindrical shell

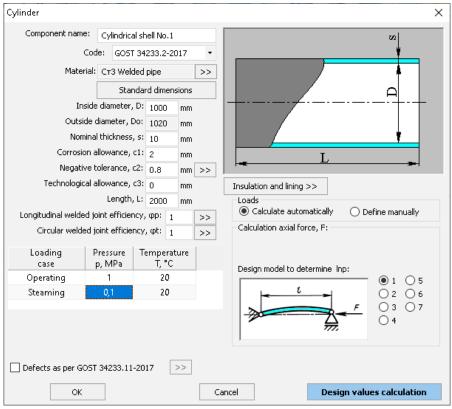


Fig. 3.32 Cylindrical shell

Code - Set the standard to be used for analyzing this component. Calculation as per GOST 14249-89, GOST 34233.2-2017, EN13445-3, ASME VIII-1 is available.

Standard dimensions – with this command one can select a number of preferable shell sizes (or reject it), indicate the intended type of workpiece (flat steel or pipe), and specify the standard of the workpiece. At that, wall diameter and thickness will be set automatically, as well as a negative allowance.

Selection of standard cylindrical shell								×
The preferred range of diameters:	GOST 9617-76 Vessel	s and apparatus. S	eries of diameters					•
Workpiece type:	Products in coils	•						
Code:	GOST 19904-74 Cold-	rolled flat steel. Gr	ade					•
Diameter (outer - for pipes), mm:	200	 Thickness, mm 	.4	• Wi	dth of sheet, mm:	500	•	
Precision/Tolerance/Ident:	Enhanced accuracy			•				
Applicability:	The vessels of non-fe	rrous metals		•				
	ОК				Cancel			

Fig. 3.33 Standard shell selection from database

Loads – if "Define manually" is selected, external loads and how they influence the component must be defined (see below). Input loads are considered only when analyzing this component and **are not transferred** to supports, adjoining components, etc. If "Calculate automatically" is selected, maximum loads are determined automatically based on restraint properties and properties of loads on all model components, weight loads from material and component content, etc.

Bending moment, intersecting force, axial force, design model are determined based on a preliminary analysis of external forces and moments affecting the shell.

In the presence of compression forces on the shell, design model is determined according to GOST 34233.2–2017 (GOST 14249–89), as shown on Fig. 3.34. Lengths of external pressure and axial force are calculated automatically based on the structure of the model as a whole.

User's Manual

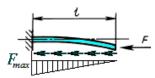


Fig. 3.34 Design models for determining the overall shell stability

At calculation of loads using FEM (finite element method), cylindrical shell is modelled by a chain of beam elements of ring cross-section with weightless nodes (Fig. 3.35). Uniformly distributed lengthwise load is applied to each chain element.

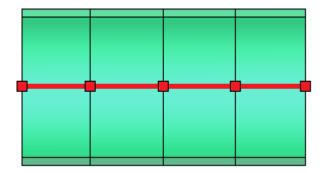


Fig. 3.35 Modeling a cylindrical shell with beam elements

3.17.3. Conical transition

Conical transition					
Component name: Conical transition No.1 Code: GOST R 52857.2-2007 • Shell material: Cr3 • Properties Add Inside diameter in the beginning, Dr: 1000 mm Inside diameter in the end, Dk: 2000 mm Nominal thickness, sk: 10 mm Corrosion allowance, c1: 2 mm					
Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Shell length, L: 2000 mm Horizontal offset, X0: 0 mm Vertical offset, Y0: 0 mm	Insulation and lining >> Low-cycle fatigue >> Loads O Calculate automatically Define manually Design pressure (without hydrostatics), p: O External MPa				
Longitudinal welded joint efficiency, Fip: 1 >>> Circular welded joint efficiency, Fit: 1 >>> Calculation temperature, T: 20 °C Defects as per GOST R 52857.11-2007 >>>					
Next >> Can Allowable pressure (at a length L); [p] = 1.09 MPa Effective thickness including allowances (at a length L); sp + c					

Fig. 3.36 Conical transition

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties of conical transitions are set in the same way as those for cylindrical shells.

Horizontal and vertical displacement is calculated for eccentric conical transitions. Use the Next >> button to switch to a list of joints with neighboring components. Joint structure is according to GOST 34233.2-2017 (GOST 14249-89).

At calculation of loads using FEM method, conical transition is modelled by a graduated chain of beam elements of constant ring cross-section (Fig. 3.37). To each chain element a uniformly distributed lengthwise load is applied, amount of which depends on the mean cross-section diameter at the given area.

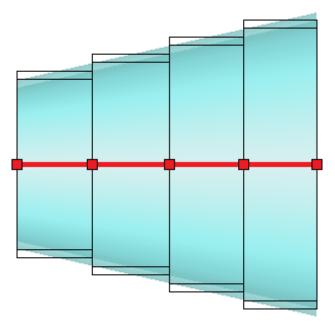


Fig. 3.37 Modeling a conical transition with beam elements

Reinforcement elements in the transition ends are modelled similarly to the cylindrical shell.

3.17.4. Dished head

Ellipsoidal head					
Component name: Elli	ipsoidal hea	ad No.1			
Code:	GOST R	52857.2-2007	<u></u>		
Head material:	Dimensio	ns as per GOST >			
Ст3 •	Propertie	es Add			
Head inside diar	meter, D:	1000 mm			
Head wall thick	ness, s1: ·	10 mm	D		
Corrosion allowa	ance, c1:	2 mm			
Negative tolera	nce, c2:	0.8 mm			
Technological allowa	ance, c3:	0 mm			
		250 mm	Insulation and lining >> Low-cycle fatigue >>		
Straight flange lei	ngth, h1:	0 mm			
Welded joir	nt efficiency	y, Fi: 1 🛛 >>	Defects as per GOST R 52857.11-2007		
Calculation temperature, T: 20		20 °C			
Design pressure (without hydrostatics), p:					
💿 Internal 🛛 🔿 Ext	ernal	0 MPa			
OK			Cancel Design values calculation		
Effective thickness including allowances: s1p + c = 2.8 mm Allowable pressure: [p] = 2.21 MPa					

Fig. 3.38 Ellipsoidal head

Component name, code of standards, dimensions according to GOST, material, dimensions, weld strength factors, insulation and lining, and load properties for dished heads are set in the same way as those for cylindrical shells.

At calculation of loads using FEM method, dished heads are represented as a pair of weightless beam elements with node in the point, which corresponds to the head gravity centre (Fig. 3.39).Cross-section of elements is considered to be constant and corresponding to the cross-section of the head foundation. Head weight is considered to be lumped and is applied to the centre of gravity (yellow node).

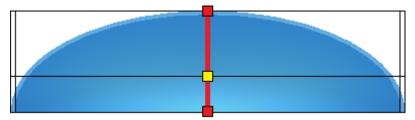


Fig. 3.39 Modeling a dished head with beam elements

Hemispherical head				<u> </u>	
Component name: Spherical head No.1				<u></u>	
Code: GOST R 52857.2-2007 -			2007 🔹		
Head material:					
Ст3 -	Proper	ties	Add		
Head inside dia	ameter, D:	1000	mm		
Head wall thic	kness, s1:	10	mm		
Corrosion allow	ance, c1:	2	mm	E E	
Negative toler	ance, c2:	0.8	mm	D	
Technological allow	ance, c3:	0	mm	₽ I	
Straight flange l	ength, h1:	0	mm	Insulation and lining >> Low-cycle fatigue >>	
Welded joint efficiency, Fi: 1 >>			>>		
Calculation temperature, T: 20		20	°C	Defects as per GOST R 52857.11-2007	
Design pressure (without hydrostatics), p:					
💿 Internal 🛛 🔿 Ex	ternal	0	MPa		
ΟΚ			C	ancel Design values calculation	
Effective thickness including allowances: s1p + c = 2.8 mm Allowable pressure: [p] = 4.4 MPa					

Fig. 3.40 Hemispherical head

Torispherical head						
Component name: Torispherical head No.1						
Code: GOST Head material:	R 52857.2-2007 -		C1			
CT3 TOPP	ties Add	1	<u></u>			
Inside head diameter, D:	1000 mm					
Head thickness, s1:	10 mm					
Corrosion allowance, c1:	2 mm		<u>r</u>			
Negative tolerance, c2:	0.8 mm	R				
Technological allowance, c3	-					
Straight flange length, h1:	0 mm	∕ Welded head type				
Crown radius, R:	1000 mm		 Seamless 			
Knuckle radius, r1:	200 mm					
Calculation temperature, T	20		 Welded from flat bars 			
 Design pressure (without hydrostat Internal External 	o MPa		 Welded from segments 			
Defects as per GOST R 52857.11-2007						
Welded joint efficiency. Fit 1						
			Insulation and lining >>			
			Low-cycle fatigue >>			
OK Cancel Design values calculation						
Effective thickness including allowances: s1p + c = 2.8 mm Allowable pressure: [p] = 1.4 MPa						

Torispherical head type is determined according to GOST 34233.2-2017 and can be seamless pressed, welded from flat bars or welded from segments (Fig. 3.42). Weld strength factors must be set welded heads.

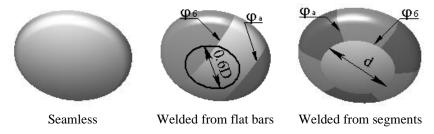


Fig. 3.42 Torispherical head types

3.17.5. Flat conical head

Flat conical head					×
Component name Head type With simple re With knuckle With reinforci Without reinforci	Code: GOS1 einforcement ng ring	O With		orcen	
	erial: CT3 SH		:	>>	8
H	Head inside dia	ameter, D: 1	000 m	m	
	Head wall thic	kness, s1: 1) m	m	Wall thickness of adjacent component, s: 10 mm
(Corrosion allov	vance, c1: 2	m	m	Insertion material(s2): CT3 Sheet >>
	Negative tole	rance, c2: 0	.8 m	m 🗦	>>>
Tech	nological allov	vance, c3: 0	m	m	Insertion wall thickness, s2: 50 mm
Head w	vall deflection	angle, o1: 7	5 0		Insertion wall thickness, s2: 50 mm
	Head h	eight, Hd: 6	7 m	m	
Circular	r welded joint	efficiency, φt	: 1	>>	
Longitudinal	welded joint (efficiency, φρ	: 1	>>	
					Reinforcement thickness, s1: 0 mm
Loading	Pressure	Temperatu			Reinforcement length, a1: 0 mm
case	p, MPa	T, °C	re		Reinforcement thickness, s2: 0 mm
Defe	0	20			Reinforcement length, a2: 0 mm
Рабочие условия	U	20			Conical section material (s1): CT3 Sheet >>
					Cylindrical section material (s2):
Insulation and linin	ig >>				Cr3 Sheet
	OK				Cancel Design values calculation

Fig. 3.43 Flat conical head

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for flat conical heads are set in the same way as those for cylindrical shells. Head type is determined according to GOST 34233.2-2017.

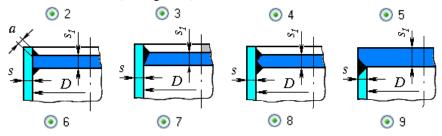
"Nozzle at top" option is used in cases when the modeling of the vessel with a conical transition gives an incorrect result (for example, for horizontal vessels on saddle supports).

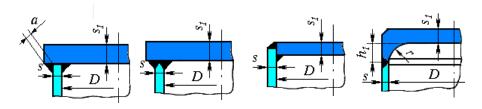
3.17.6. Steep conical head

Steep conical head				×
Component r	name: <mark>Steep</mark>	o conical head No.	1	
	Code: G	OST 34233.2-201	7 🔹	⇒ ા⊂ 22 <mark>⇒</mark> ાર્ગ બ
		Standard dimen	sions	al
Head type Junction with cyli Junction with cyli Junction with cyli Junction with cyli	ndrical shell, (ndrical shell, (nent	
Shell mat	erial: CT3 SI	neet	>>	H _∂
Hea	d inside diame	eter, D: 1000	mm	Section material s1 (st): CT3 Sheet >>
Wallo	deflection and	gle, a1: 60	•	
	ominal thickne	. 10	mm	Section material s2: CT3 Sheet >>
	osion allowan		mm	
	jative toleran		mm >>	Insertion wall thickness, s1: 15 mm
lechnol	ogical allowan		mm	Insertion wall thickness, s1: 15 mm Insertion wall thickness, s2: 15 mm
Longitudinal w		• · · · · · · · · · · · · · · · · · · ·	mm	Insertion section length, a1: 50 mm
-	eided joint er velded joint el		>>	Insertion section length, a2: 50 mm
	i de di jointe en	ficiency, φt: 1	>>	
Loading case	Pressure n MDa	Temperature T. °C		
	p, MPa			✓ Nozzle at top S2
Operating conditio	0	20		Connection type
Vacuum	0	20		Without reinforcement Simple reinforcement
Defects as per GO	ST 34233.11			SI V
Insulation and lini	ng >>	R		ent thickness, s1: 0 mm
				ement length, a1: 0 mm ent thickness, s2: 0 mm
		r.		ement length, a2: 0 mm
				Conical section material (s1): CT3 Sheet >>
				Cylindrical section material (s2): CT3 Sheet >>
ОК			Cance	Design values calculation

Fig. 3.44 Steep conical head

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for steep conical heads are set in the same way as those for conical transitions.


"Nozzle at top" option is used in cases when the modeling of the vessel with a conical transition gives an incorrect result (for example, for horizontal vessels on saddle supports).


Component name: Flat head (cover) No.1	Construction of heads and covers	
Code: GOST R 52857.2-2007 💌	⊙1 ○8	
Head material:	02 09	a 51.
Ст3 Properties Add	O3 O10	
Inside diameter of adjacent component, D: 1000 mm		
Wall thickness of adjacent component, s: 10 mm		
Head wall thickness, s1: 10 mm	05 012	
Corrosion allowance, c1: 2 mm	○6 ○13	I
Negative allowance, c2: 0.8 mm	07 014	
Technological allowance, c3: 0 mm	O 15	
Welded joint efficiency, Fi: 1	Insulation and lining >>	Low-cycle fatigue >>
Calculation temperature, T: 20 C		
Calculation pressure, p:		Weld cathetus, a: 20 mm
⊙ Internal O External 0 MPa		
ОК	Cancel	Design values calculation

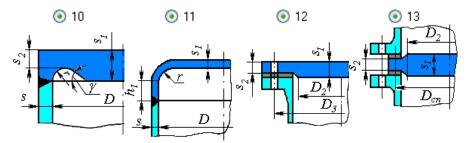

3.17.7. Flat head

Fig. 3.45 Flat head

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for flat heads are set in the same way as those for cylindrical shells. Head structure type is determined according to GOST 34233.2-2017 (see Fig. 3.46).

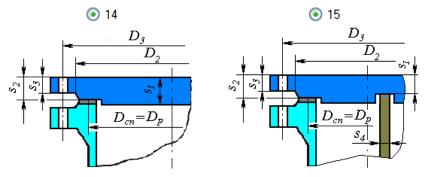
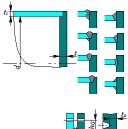
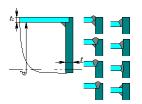


Fig. 3.46 Flat head types as per GOST

Head calculation is now available, as per ASME VIII-1 (versions of structure are indicated in Fig. 3.47).

VESSEL STRENGTH ANALYSIS SOFTWARE





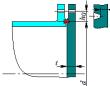


Fig. 3.47 Flat head types as per ASME

Note: don't use this component to model a tank supported by soil (the calculation method does not take into account the supporting conditions and in this case gives an excess margin).

3.17.8. Flat head with ribs

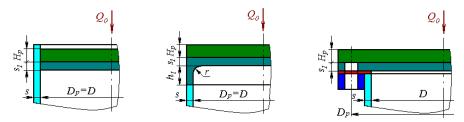
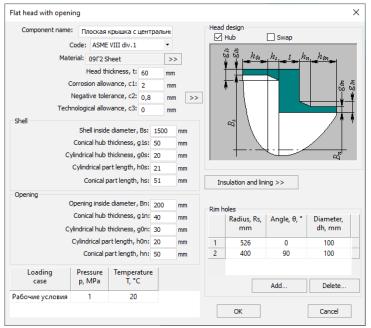

Flat head/cover with	ribs			×
Component name	at bear	(cover) with ribs	No.1	Adjacent component: Cylindrical shell No.1
		T 34233.2-2017		Construction of heads and covers
		Welded pipe		Without hub and boss With hub With boss
Inside diameter of adj				\gg Q_o
Wall thickness of ad		1000	mm	
	ad wall thickr	10	mm	
	rosion allowa	10	mm	
		ince, c2: 0.8		
	logical allowa		mm	
1001110	logical allorra		mm	╵╹
				$S = D_p = D$
Welde	ed joint efficie	ency. (n: 1	>>	Version 1 Version 2
Loading	Pressure	Temperature		
case	p, MPa	T, °C		Additional load onto the cover centre, Q0
Operating	1	20		Automatically Manually
Steaming	0	110		Rib options (including corrosion)
Hub/boss options				Rib material: CT3 Welded pipe >>
	1aterial: CT3	3 Welded pipe		>> Number of ribs, n: 6
	Hei	ight, H0: 100	mm	Welded section width, t: 10 mm
Distance from I	he head surf	face, h0: 20	mm	Section height, h: 20 mm
	Wall thick	ness, s0: 10	mm	
	Diame	eter, d0: 100	mm	1
Allowance to t	he wall thickr	ness, c0: 0	mm	1
Rib profile type				Distance to the centroid, e: 13.6 mm
	~ · [,		Sectional area, Ap: 200 mm ²
● 1 ○ 2 ○ 3	°*			Second moment of area, Ip: 6667 mm4
			, I	Rib height, Hp: 20 mm
⊖ Custom 0 - Custom			~ ∾	Welded joint efficiencyof ribs, pp: 1 >>
			•	Design values calculation
		le		
Assortment >>				
				OK Cancel

Fig. 3.48 Flat head with ribs

Rib section type and dimensions are set in the same way as those for <u>stiffening ring</u> of cylindrical shells.

It is possible to attach a child component (cylindrical shell) to the central part of the head, which will automatically determine the load on the center Q. If this load is applied manually, it is taken into account in the model and transferred to adjacent components.


The available options are shown on Fig. 3.49.

3.17.9. Integral flat heads with opening

This component behaves in the construction like a conical transition (creates a difference in diameters). Adjacent elements can be attached to a smaller diameter.

Fig. 3.50 Integral flat head with opening

The "Hub" option sets the hub on a smaller diameter (Fig. 3.51)

The "Swap" option sets the orientation of the component along the axis of the vessel.

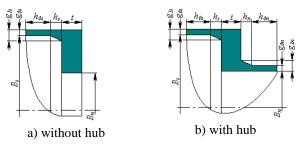


Fig. 3.51 Flat heads with opening designs

The "Rim holes" option allows to take into account the weakening by perforation (additional small holes located in the edge zone of the head).

3.17.10. Oval head

This component can be attached to oval nozzle.

Oval cover	
Element name: Oval head No.1	Cover type
Attached to: Oval nozzle No.1	Design: 💿 Type 1 🔘 Type 2
	<i>n</i>
Code: RD 10-249-98	
Cover material:	
СтЗ	
Larger inside diameter of nozzle, n: 300 m	
Minor inside diameter of nozzle, m: 200 m	
Minor diameter of the bolts arrangement line, Db: 250 m	im line line line line line line line line
Corrosion allowance, c1: 2 m	1m
Negative tolerance, c2: 0 m	ım
Technological allowance, c3: 0 m	111 I I I I I I I I I I I I I I I I I I
Outside bolt diameter, d: 10 💌 n	
Number of bolts, n: 12	S S
Wall thickness, s1: 20 m	
Flange thickness, s3: 18 m	$m \qquad D_u \qquad /$
Minor average diameter of the gasket, Du: 220 m	D_b
Calculation temperature, T: 20 *	
Design pressure (without hydrostatics), p:	
Internal ○ External 1 MPa	
OK	Cancel Design values calculation

Fig. 3.52 Oval head

Possible designs of the head according to RD 10-249-98 shown in Fig. 3.53.

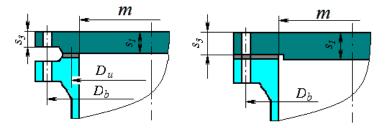


Fig. 3.53 Oval head types

3.17.11. Spherical head without knuckle

Spherical unbeaded head/cover			Σ		
Component name: Spherical unbeade	d head (c	over	Construction of heads and covers		
Code: GOST R 5285	7.2-2007	-	S _I		
Head material:					
C⊤3 ▼ Properties	Add.				
Inside diameter of adjacent component, D:	1000	mm	$\bigcirc 3$		
Wall thickness of adjacent component, s:	10	mm	$\bigcirc 4 \qquad \underline{s} \qquad D^{\vee} \end{pmatrix}$		
Head radius, Rc:	1000	mm	- 4		
Head wall thickness, s1:	10	mm	○ 5		
Corrosion allowance, c1:	2	mm	0.6		
Negative tolerance, c2:	0.8	mm			
Technological allowance, c3:	0	mm	Insulation and lining >> Head low-cycle fatigue >>		
Welded joint efficiencyof spherical segments, Fi: >> Circular welded joint efficiencyof of the head edge, Fik: 1 >> Calculation temperature, T: 20 °C Design pressure (without hydrostatics), p: • • Internal External 0 MPa Defects as per GOST R 52857.11-2007 >>					
ΟΚ		Cancel	el Design values calculation		
Effective thickness including allowances: s1p Allowable pressure: (p) = 0.667 MPa	+ c = 2.8	mm			

Fig. 3.54 Spherical head without knuckle

Component name, code of standards, material, dimensions, weld strength factors, insulation and lining, and load properties for flat heads are set in the same way as those for cylindrical shells. Head structure type is determined according to GOST 34233.2-2017 (see Fig. 3.55).

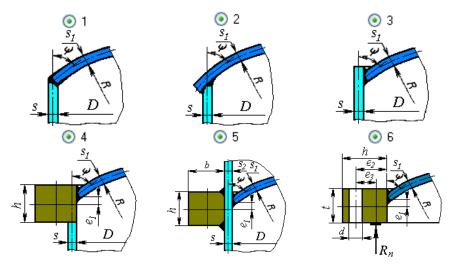
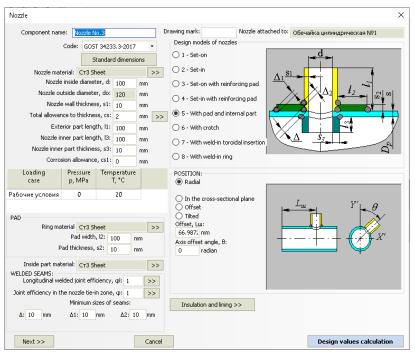



Fig. 3.55 Spherical head types

3.17.12. Nozzle

Fig. 3.56 Nozzle

Component name, code of standards, material, dimensions, and weld strength factors for nozzles and padding ring (if present), as well as load properties, are set in the same way as those for cylindrical shells. Nozzle placement is determined based on the type of adjoining component.For cylindrical and conical shells and for conical heads, the nozzle can be radial (Fig. 3.57, a), positioned in the cross-sectional plane (Fig. 3.57, b), offset (Fig. 3.57, c), or placed arbitrarily (Fig. 3.57, d).

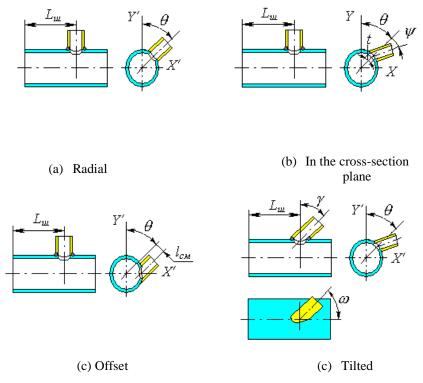
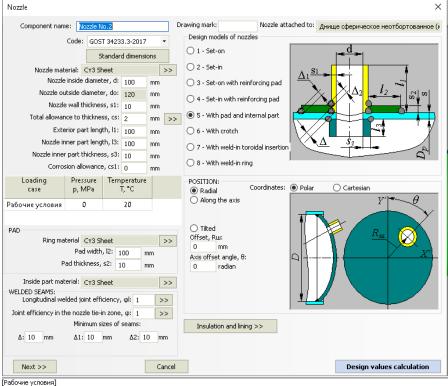


Fig. 3.57 Nozzle positioning on the cylinder


For dished heads (including spherical without knuckle), nozzle can be set in the polar or Cartesian coordinate system and can be radial, positioned along vessel's axis or positioned arbitrarily (Fig. 3.57). For flat heads, nozzles must be placed perpendicular to surface.

For a set-in nozzle with the inner surface of the shell, select the "Set-in" configuration and set $1_3=0$.

For an inward forming nozzle (Fig. 3.58) set a negative value of "x".

Fig. 3.58 Inward forming nozzle

Diameter of the hole, which does not require any reinforcement: d0 = 0 mm Allowable pressure: [p] = 2.2096 MPa Calculation nozzle wall thickness including allowances: s1p+c = 2 mm

Fig. 3.59 Nozzle on the head

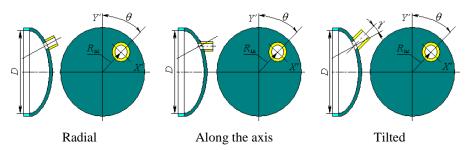


Fig. 3.60 Nozzle positioning on the head

Nozzle model is determined according to GOST 34233.4-2017. See Fig. 3.61 for possible models.

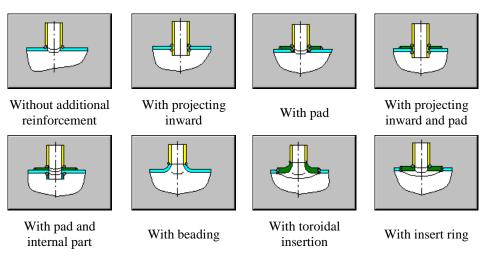


Fig. 3.61 Nozzle types

An analysis of insertion point strength from external forces and moments (assigned using the Next >> button) is available for radially placed nozzles in cylindrical and conical shells and dished heads.

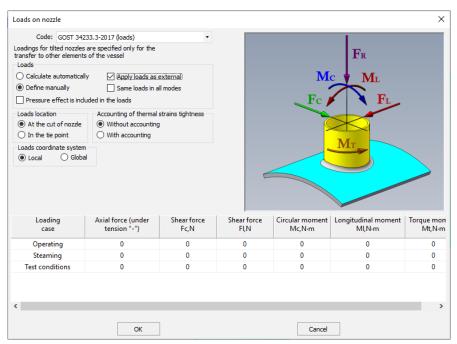


Fig. 3.62 Nozzle loads

In this case, in addition to nozzle reinforcement against pressure, an analysis of external forces and moments is carried out according to the selected standard: GOST 34233.3-2017, RD 26.260.09-92, WRC 537(107) /297, EN 13445-3

Loads can be determined automatically during analysis based on the adjoining component or set manually. If "Apply as external" option is selected, input loads on the nozzle will be transferred to all model components.

The "Same loads in all modes" option allows you to avoid filling the whole table of loads individually for each mode if the loads are the same or differ slightly.

Using the "Loads coordinate system" option, loads can be specified in the nozzle coordinate system ("Local") or in the model coordinate system ("Global").

When manually assigning loads, a user can also specify, at what point they are applied (option "Location of loads"). When assigning loads on the nozzle cut, they are automatically recalculated during the calculation, taking into account length l_1 .

For flat head, operability under pressure is evaluated considering presence of passages.

Pay attention to positive and negative signs when setting forces and moments. Positive values correspond to directions indicated on the model. Analytical model displayed in Fig. 3.62 is applicable only for radial nozzles. For other variants of structure it is necessary to control the direction of loads on the displayed model, as in general the coordinate system of nozzle is set at an angle θ first, then at ω , and then at γ or ψ . For instance, a shifted nozzle is resulted from the tilted nozzle, at $\omega = 90^{\circ}$.

At calculation of loads using FEM method, cut-in is represented as several beam elements (Fig. 3.63):

- Element marked with blue joins outer wall of supporting shell with axial line of the shell in the cut-in point. This element is a rigid link.
- Chain of elements marked with red is modelled by weightless ring cross-section beam elements. Weight load is applied to the yellow node placed in the gravity centre of nozzle.

External loads are applied to point 1 or 2, depending on the selected position.

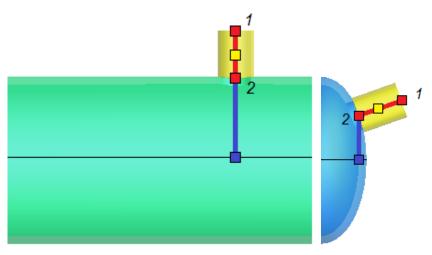


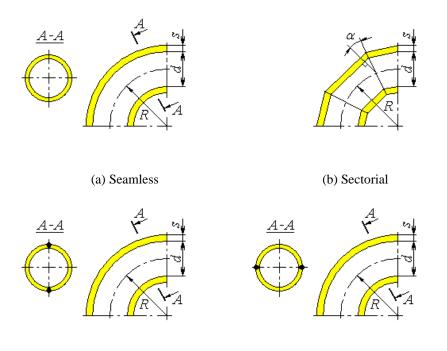
Fig. 3.63 Modeling a nozzle with beam elements

3.17.13. Oval nozzle

Conjected name Drawing matk: [Oval nozal: Nozal: Noza	Nozzle	
Calculation temperature, p: 0 Calcu	Component name Constant Name Code GOST R 52557 3-2007 V Nozzie material: Cr3 V Properties. Add. Larger incide diameter of nozzle, dt: 100 mm Nozzie wal thickness, ct: Total allowance to thickness, ct: 100 mm	Design models of nozeles C 1-VV/hout additional rentracement C 2-VV/h projecting inward C 3-VV/h pad C 4-VV/h projecting Projecting C 5-VV/h projecting pad C 5-VV/h pad in nitemat pad C 5-VV/h tocold i neeton
Longudna velded jon efficiency. Ft 1 >>> Welded jon efficiency/regard in the 1 >>> Minimum sizes of seam: Deflat 10 mm	Calculation pressure, pr O Internal O External MPa	POSITIONING: C) Radal Offset, Lat: 1000 mm Axis offset ande, Teta: D degree Axis derivation angle, onega:
Diameter of the hole, which does not require any reinforcement: d0 = 0 mm	Longtudral welded joint efficiency. Fit 1 >>> Welded joint efficiency.tergraph in the 1 >>> nozela terin zone, Fit: 1 >>> Minimum sizes of seam: Deka 10 mm OK Cancel	Low-cycle fatigue >>

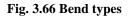
Fig. 3.64 Oval nozzle

Component name, material, dimensions, weld strength factors for nozzle and padding ring (if present), load properties and location are set in the same way as those for ordinary nozzles.


3.17.14. Bend

Element name: Bend No.1 Bend material: Cr3 Properties Add Bend internal diameter, d: 90 mm Wall thickness, s: 10 mm Corrosion allowance, c1: 2 mm Negative allowance, c2: 0 mm Technological allowance, c3: 0 mm Bend radius, B: 180 mm	id	
Wall thickness, s: 10 mm A-A 10 Corrosion allowance, c1: 2 mm Negative allowance, c2: 0 mm Technological allowance, c3: 0 mm	element name.	
	Wall thickness, s: 10 mm Corrosion allowance, c1: 2 mm Negative allowance, c2: 0 mm Technological allowance, c3: 0 mm	
Angle, gamma: 0 degree Calculated temperature, T: 20 C Calculated overpressure, p: O Internal O MPa	Calculated temperature, T: 20 C	
Insulation and lining >> OK Cancel Estimation of calculation values	DK Cancel Estimation of calcu	ulation values

Fig. 3.65 Bend


Component name, material, dimensions, weld strength factors and load properties are set in the same way as those for cylindrical shells. Bends are connected to nozzles and their adjoining shells. Bend placement is determined by its bend angle.

Bend structure is determined according to SA 03-003-07. Bends can be seamless (Fig. 3.66,a), sectorial (Fig. 3.66,b), welded longitudinally (Fig. 3.66,c) and welded transversely (Fig. 3.66,d).

(c) Welded, when the welds are positioned in the curve plane

(d) Welded, when the welds are positioned along the neutral line

3.17.15. Flange joint

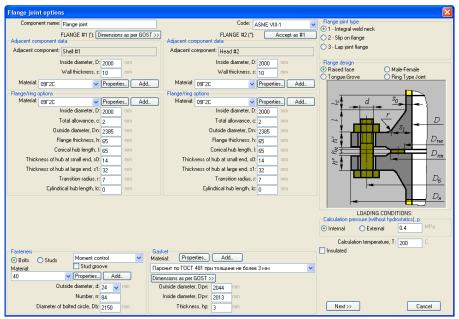


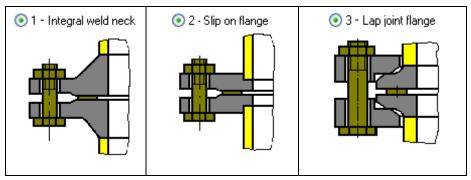
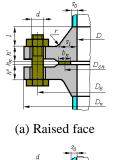
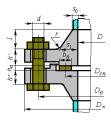
Fig. 3.67 Flange joint

Calculation of flange joints is possible as per RD 26-15-88, GOST 34233.4-2017, ASME VIII div.1, ASME VIII div.2. Comparison of codes for consideration of loads is specified below:

Table	3-4
-------	-----

Code	Pressure considerat ion	Consideration of external loads (F, M)	Consideration of temperature loads
RD 26-15-88	\checkmark	\checkmark	\checkmark
GOST 34233.4-2017	\checkmark	\checkmark	\checkmark
ASME VIII div.1	\checkmark	-	—
ASME VIII div.2	\checkmark	\checkmark	—

<u>Component name, code of standards, material</u>, dimensions and load properties for flanges are set in the same way as those for <u>cylindrical shells</u>. Flange type is determined according to GOST 12820(12821,12822)-80 (see Fig. 3.68).

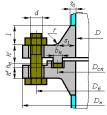

Fig. 3.68 Flange joint types

Fig. 3.69 - Fig. 3.73 show various flange joint models as per GOST 34233.4-2017.

(b) Male-Female

(c) Tongue-Grove

(d) Ring Type Joint

D_{cn}

 D_6

 D_{π}

Fig. 3.69 Butt-welded flanges according to GOST 28759.3-90 (a,b,c) and GOST 28759.4-90 (d)

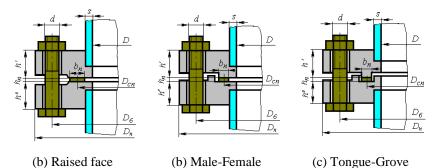


Fig. 3.70 Flat welded flanges according to GOST 28759.2-90

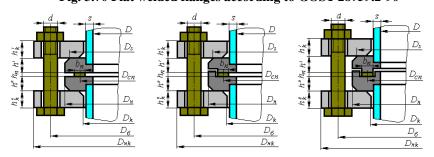


Fig. 3.71 Flanges with free rings

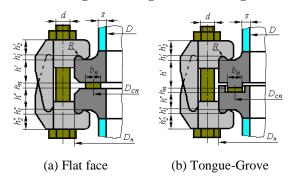


Fig. 3.72. Flanges for fasteners according to OST 26-01-396-78

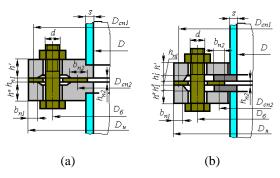


Fig. 3.73 Contact flanges

Surface design of the flange joint at calculation as per ASME VIII-1(2) is shown in Fig. 3.74.

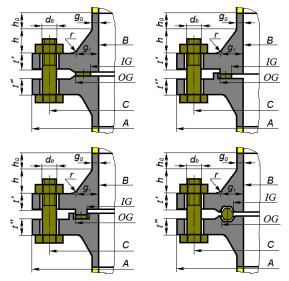


Fig. 3.74 Flange joint types as per ASME

Size of flanges, fasteners and gaskets can be selected from the database of standard parts by selecting the flange joint type and variation and pressing the "Standard dimensions" button. These properties will be set for both flanges.

Selection of standard	d flange joint
Type of flanges	Аппаратные приварные встык по ГОСТ 28759.3
Nominal diameter, Dy	400 Аппаратные приварные встык по ГОСТ 28759.3 Арматурные стальные приварные по ГОСТ 12821-80
Nominal pressure, Py	10 1,00 15
0	20 1,00 25 1,60 32 2,50 4,00 50 6,30 80

Fig. 3.75 Standard flange joint selection

To select a gasket from the database, its material must first be selected. Gasket type must match flange type to allow the selection of a standard part.

Selection of standard	l gasket	
Material	Резина по ГОСТ 7338 с твёрдостью по Шору А до 65 единиц	
Flange type	Приварные встык Flange version Плоские	
Standart	ГОСТ 28759.6-90 Прокладки из неметаллических материалов. Конструкция и размеры	~
Nominal diameter, Dy	400	
Nominal pressure, Py	0,30	
Version	Исполнение 1	
	ОК	

Fig. 3.76 Standard gasket selection

Dialog window (Fig. 3.76) may differ from the example, as it is determined by the flange joint type, its variation and the gasket material selected.

Bolt (stud) materials and properties can be selected from the database or input manually.

Pressing key <u>More>></u>, you can open a dialog of extended properties of flanges and fasteners (Fig. 3.77):

Additional fasteners parameters X					
Fasteners O Bolts	Outside diamet ds Sectional diameter		>> mm		
(*) Specif	fy 0 to assign automatically as	for a coarse th	read		
Groove	Groove Groove diameter		>> mm		
	Material: 35 Bolting		>>		
Tightening control: No tightening control \checkmark					
Tightening calculation: GOST 34233.4-2017					
☑ Washer 1 Material:	Ст 3 Ріре	>> hw1: 1	mm		
The second is the same					
✓ Washer 2 Material:	Ст 3 Ріре	>> hw2: 1	mm	- d -	
The same tightening in all design conditions and testing					
OK			Cancel		

Fig. 3.77 Fasteners additional parameters

Item **Groove** is used for rods with groove diameter less than the internal threading diameter. Flange insulation ($\boxed{lnsulated}$) affects the temperature of flange joint components.

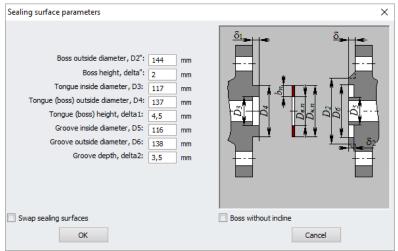
Selection of option «Control per moment» activates checkbox «Calculation of bolting load without allowance for minimum initial tension of bolts (0.4*[6]*Ab)», in some cases it helps avoiding of excessive reinforcement of flanges.

If you select item "Uniform tightening under operating conditions and tests", bolting load will be taken the same (maximum of all) for all modes.

The "Tightening calculation" option allows you to select an alternative standard for calculating the torque on the wrench.

Flange joint gasket and its properties can be selected from the RD 26-15-88 database or input manually by pressing Add_____.

Database of materials of flanges and bolts is sensitive to the selected calculation code. This is due to the fact that ASME II Part D includes a large volume of data per allowable stresses, which can be used **only** in calculations as per ASME VIII-1(2).


Flange insulation influences on calculation temperatures of flange joint components, weight and material consumption.

Checkbox «Insertion» is used for the part clamped between the flanges (lineblanks, blind, etc.).

Insertion				×
Insertion material:	Ст3 Welded pipe		>>	->
Insertion thickness, spn: 7 mm Insertion thickness, spn: 7 mm Swivel cap Closed under operating conditions Closed under test conditions				
Outside diameter, D:		148	mm	
Total allowance, c:		0	mm	
Center distance, A:		85	mm	
Inside diameter, d1:		96	mm	I III
Central part thickness, sp:		2	mm	
Central part diameter, d2:		94	mm	Standard dimensions
Distance between webs, B:		70	mm	Standard dimensions
Webs diameter, d:		3	mm	
ОК				Cancel

Fig. 3.78 Insertion

Fig. 3.79 Sealing surfaces

Option "Swap sealing surfaces" allows exchanging "male-female".

The "Flange Thickness" parameter has a peculiarity — having an unsymmetrical configuration of the sealing surface (tongue-groove,, male-female), it can refer both to flange No. 1 and flange No. 2 (depending on the state of the option "Swap sealing surfaces").

. Novtaa

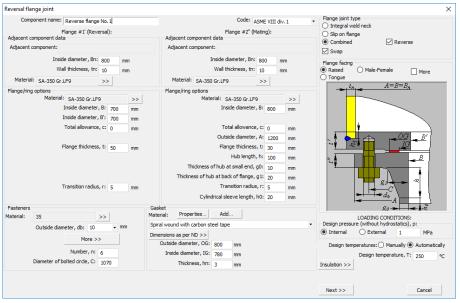
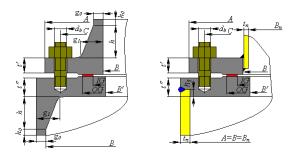

Loads O Calculate automatically Define manually			
Define manually			
	Apply as	external	FR
Pressure effect is included i	n Fr		I'R
Loads under operating conditio	ns		
Axial force, Fr: (under	0	N	
tension the sign is «-») Shear force, Fc:			
	•	N	Fc FL
Shear force, FI:	0	N	
Circular moment, Mc:	0	Nm	
Longitudinal moment, MI:	0	Nm	
Torque moment, Mt:	0	Nm	
Loads under test conditions			N.C.
Radial force, Fr: (under tension the sign is «-»)	0	Ν	
Shear force, Fc:	0	N	
Shear force, FI:	0	N	-
Circular moment, Mc:	0	Nm	
	•		
Longitudinal moment, MI:	0	Nm	
Torque moment, Mt:	0	Nm	

Fig. 3.80 Flange loads

Loads can be calculated automatically during analysis based on components adjoining the flange joint or set manually. If "Apply as external" option is selected, set loads on the flange joint will be transferred to all model components.


3.17.16. Reversal flange

A reversal flanges set similarly to the flange connection.

Fig. 3.81 Reversal flange

Calculation of reversal flanges can be done according to ASME VIII div.1. Available calculation schemes are shown in Fig. 3.84.

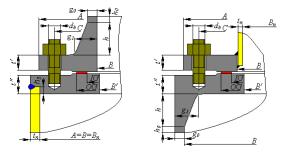
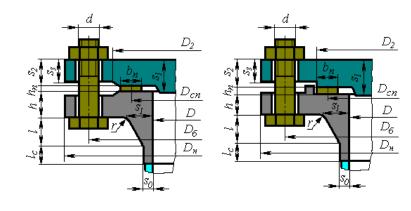
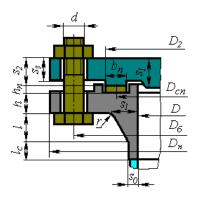
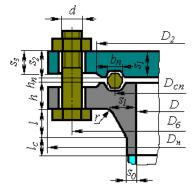


Fig. 3.82 Reversal flange types

3.17.17. Bolted heads


Bolted heads include three types - flat, ellipsoidal and spherical without knuckle. They are composed of a flange and the head itself.


Detachable cover		
Сотролепt name: Крышка плоская №1	FLANGE: [Flange+cover as per ND >>] [Flange as per ND >>]	Flange type Integral weld neck
Code: GOST R 52857.4,2-2007	Adjacent component data Adjacent component:	Slip on flange
Head material: Cr3 Wall thickness, s1. Consain allowance, s1. Regative tolerance, s2. 0.8 mm Technological allowance, s3. 0.9 mm Thickness in gasket place, s2. 22 mm Thickness in gasket place, s2. 22 mm Minimum diameter of exterior thirmed pat. D2. Outside diameter, D1. S55 mm Wedded joint efficiency, R1. Stot for separating wall	Inside diameter, D. 400 mm Wall thickness, s: 10 mm Material: (2r3 >> Naterial: (2r3 >> Inside diameter, D. 535 mm Flange thickness, h: 35 mm Hub lenght, I: 30 mm Thickness of hub at amail end, s0 (6 mm Thickness of hub at large end, s1: (16 mm Thickness of hub at large end, s2: (16 mm	Pange design Pat Tongue Grove And Female Ring Type Joint D D D D D D D D D D D D D
Outside diameter, d: 20 v mm Di	Cylindical hub length, Ic:	LOADING CONDITIONS: Design presure (whou thydrotatice), p: Internal External Manually Automatically Calculation temperatures: @ Manually Automatically Cover, Tkp: 20 °C Range, Th: 20 °C Gamps, Th: 20 °C Gamps, Th: 20 °C


Fig. 3.83 Flat bolted head

Bolted heads can be adjoined to the same components as welded heads.

There is a possibility of selecting either head assembled together with the flange (components are selected from database, so that the fasteners parameters match), or the flange separately (in case of non-standard heads).

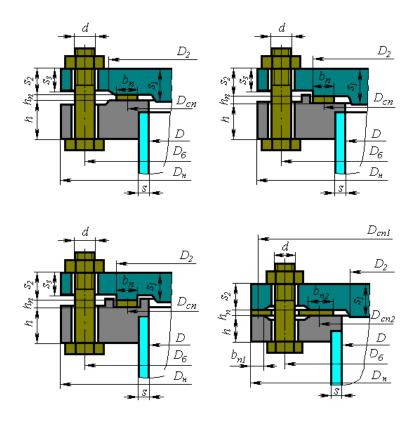
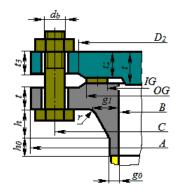
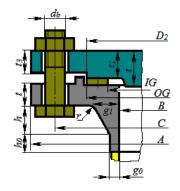
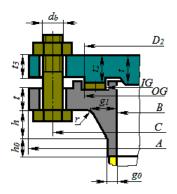
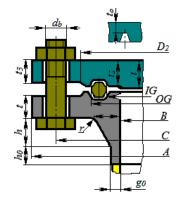
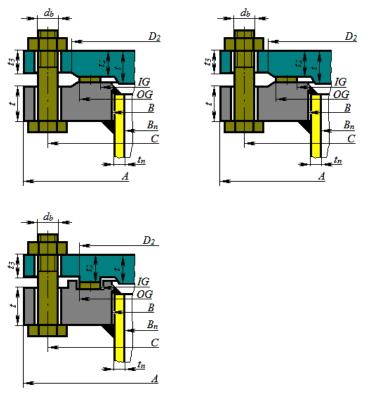
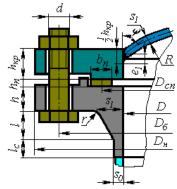
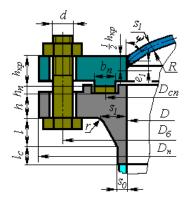
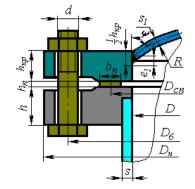
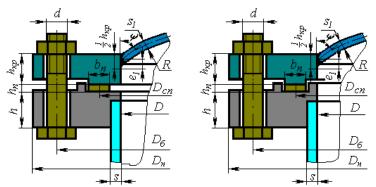
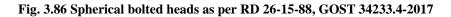
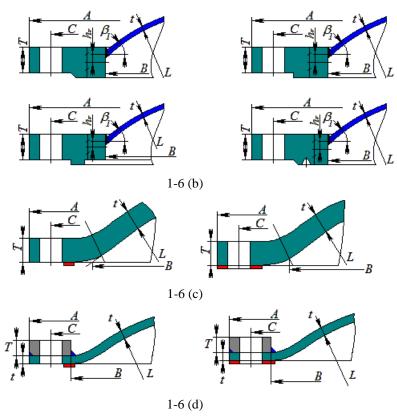
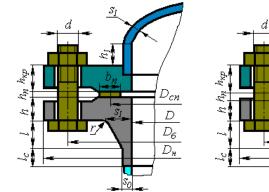
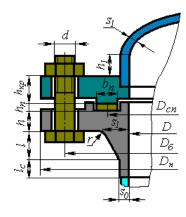
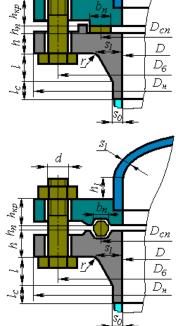






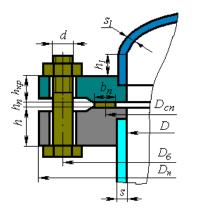
Fig. 3.84 Flat bolted heads as per RD 26-15-88, GOST 34233.4-2017

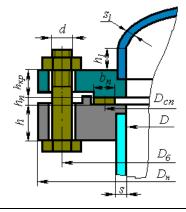






Fig. 3.85 Flat bolted heads as per ASME VIII-1




Fig. 3.87 Spherical bolted heads as per ASME VIII-1



 S_I

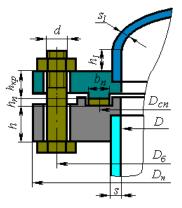
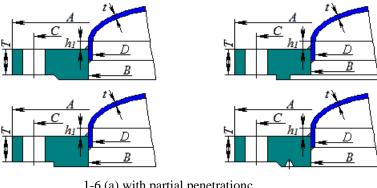
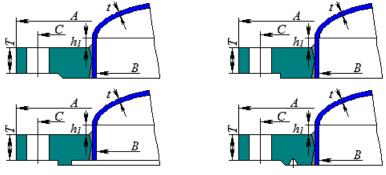
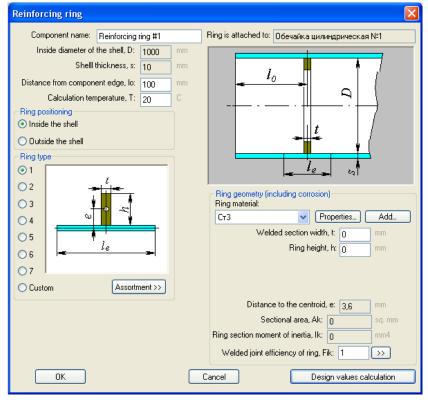




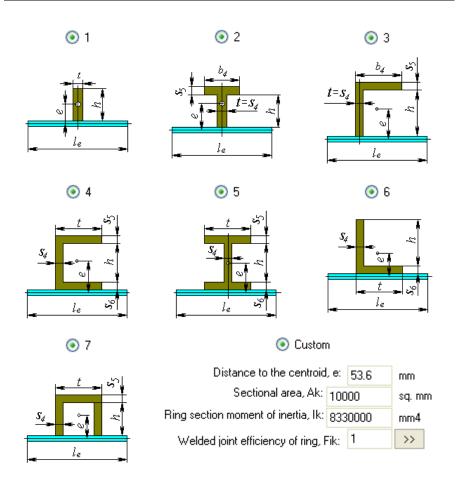
Fig. 3.88 Elliptic bolted heads as per RD 26-15-88, GOST 34233.4-2017

1-6 (a) with partial penetrationc



1-6 (a) with full penetration

Fig. 3.89 Elliptic bolted heads as per ASME VIII-1


3.17.18. Stiffening ring

Stiffening rings can be adjoined to any cylindrical shells in the model. Component name, material, dimensions, weld strength factors and load properties for stiffening rings are set in the same way as those for cylindrical shells. Ring placement on the model is determined by the adjoining component and the distance from the left (head) margin (toward Z-axis). The ring can be placed both inside and outside the shell.

Fig. 3.90 Stiffening ring

Ring type and dimensions are determined by standard cross-sections or input manually. Material corrosion must be taken into account.

Fig. 3.91 Standard sections

Standard cross-section of selected pipe can be selected from the database using the Assortment >> button.

3.17.19. Stiffening rings group

This component provides setting of group of stiffening rings of the same section, located at regular intervals. In calculating, each ring within the group is considered individually. So, the groups of rings can be combined with single rings. These rings are set similarly to the component stiffening ring.

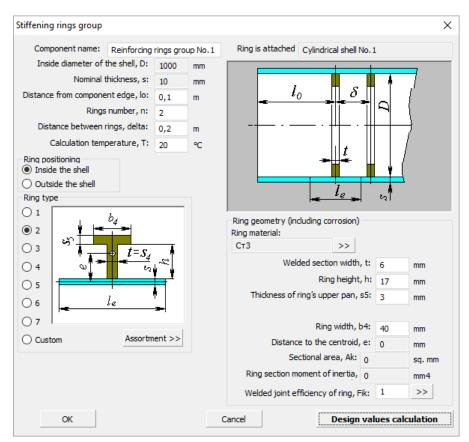


Fig. 3.92 Stiffening rings group

3.17.20. Saddle support

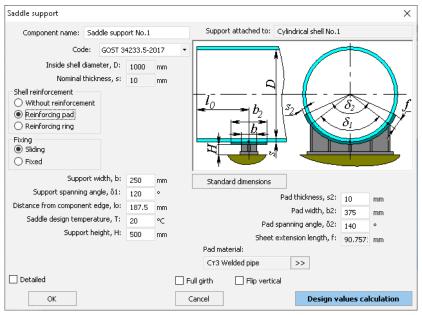


Fig. 3.93 Saddle support

Saddle supports can be adjoined to any cylindrical shells of the vessel casing. Its placement and dimensions determine the analysis of bearing loads on vessel components. The number of supports must be no less than two.

reinforcing pad

Fig. 3.95 Saddle support with reinforcing ring

Name, code of standards and dimensions of saddle supports are set in the same way as those for cylindrical shells.

A saddle support can have no reinforcements or be supported by a reinforcing pad or stiffening ring.

When supported by stiffening ring, the ring's type, placement and dimensions are set in the same way as those for cylindrical shells (see item 3.17.18). The ring is considered at calculation of cylindrical shell against pressure influence. A user can also consider presence of spacing ribs in the internal stiffening ring (Fig. 3.96). Cross-section parameters of spacing rib can be set by selecting \rightarrow key.

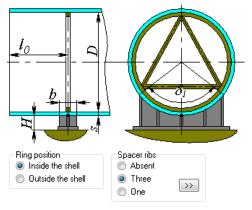
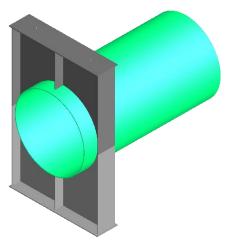



Fig. 3.96 Spacer ribs inside of ring

The "Full girth" option affects the visual display of the support and allows to form a full girth support consisting of two components (in the second component, the option "Flip vertically" must be enabled).

Fig. 3.97 Full girth support consisting of two components One of the vessel supports must be fixed.

At calculation of loads using FEM method, a saddle support is represented as two beam elements (Fig. 3.98):

- Element marked with red connects the pinning point with outside wall of supporting shell. This element has a cross-section typical for a certain version of support.
- Element marked with blue joins outside wall of supporting shell with its axial line. This element is a rigid link.

Node marked with yellow is fixed per 5 degrees of freedom for fixed support (Fx, Fy, Fz, My, Mz) or 4 degrees for sliding support (Fx, Fy, My, Mz). In the process of solving, the fastening in Fz for the sliding support is iteratively modeled by the friction force.

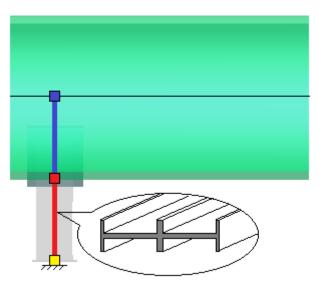
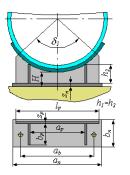
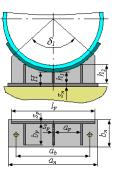
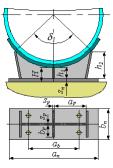


Fig. 3.98 Modeling a saddle support with beam elements

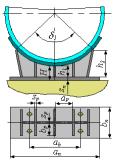

If analysis of the support is required (Support calculation required), support type (one of several standard types), materials and dimensions must be assigned.

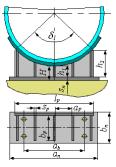

"Without calculation" option allows to form a refined version of the support without calculating (only the shell at the point of support is considered).

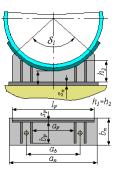

"Flip horizontally" option flips the support relative to the vertical plane.

Saddle support					>
Code: GOST	34233.5-2017	•	Star	dard dimension	15 J
O Type 1 O Type 5	 Type 2 Type 6 	ТуреТуре		O Type 4	
Support material:	Ст 3 Ріре		>> [Flip horizonta	
Fnd. concrete:			>>		
I	Middle support tie		· ·	mm	
	Last support tie		•	mm	25
	Support ties this		-	mm	Sp ap
	allowance to tie th			mm	
Distan	ce between suppo Tie	width, bo		mm	
			Ū	mm	
	Baseplate		1000	mm	
		width, bn	200	mm	
	Baseplate this			mm	Support welding
Anchor bolts	Number of v	ertical ribs	: 3		Welding around the contour Weldind cathetus, Δw : 10 mm
	Material: CT3 Bol	ting		>>	Welding contour area, Aw: 23996 mm ²
Diameter	outside/sectional:	24	0	>> mm	Welding contour section
	Bolt corr	osion, cb:	0	mm	modulus, ww:
Tigh	tening calculation:	No calcul	ation	•	Fastening in the longitudinal plane
		Number,	n: 4	•	Hinge Rigid fastening
	Distance betwee	en bolts, a	b: 650	mm	Specified pliability
Support	on the base friction	n constant	: 0,3		O opeaned pilability
ОК				Cancel	Design values calculation

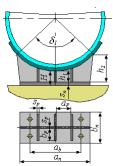
Fig. 3.99 Saddle support options






Type 1

Type 3



Type 4

Туре б

Type 7

Fig. 3.100 Saddle types

The "Anchor bolts" option allows you to set and calculate the fastening of the support to the foundation under external loads (weight, seismic, wind, temperature loads).

The "Support welding" option allows you to set the parameters of the weld between the vertical ribs of the support and the base plate.

The option "Fastening in the longitudinal plane" allows you to control the fastening of the support from the moment in the YZ plane:

- Hinge used for flexible structures or sliding supports if there is a gap between the base plate and anchor bolts, or for fixed supports if the anchor bolts are in a row in the XY plane. Fastening in the YZ plane is modeled by a hinge, no moment occurs in the reactions. This option is recommended by GOST 34233.5 (Fig. 3.101)
- Rigid fastening used for rigid structures or fixed supports rigidly fixed to the foundation. Fastening in the YZ plane is modeled by a rigid anchorage, the shell body is modeled by a rigid element. This option gives the most conservative result, possibly a significant overestimation of the loads.
- Specified pliability used in cases where it is possible to estimate the overall pliability of the fixing (flexibility of the shell wall + pliability of the foundation). Fastening in the YZ plane is modeled by a spring with a given pliability.

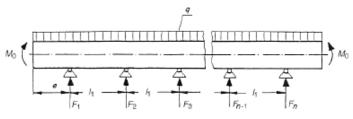
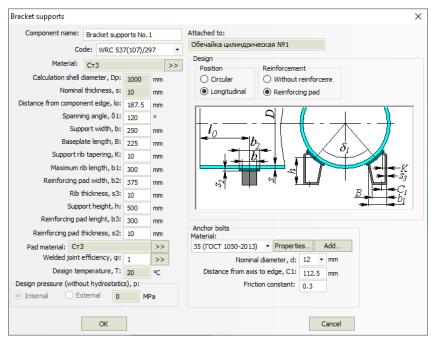
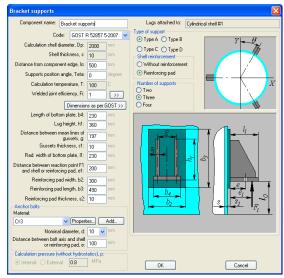



Fig. 3.101 Calculation scheme of a horizontal vessel according to GOST 34233.5


3.17.21. Bracket supports of horizontal vessel

This component is a group of two symmetrical supports. It can be attached to the same components of a horizontal vessel as the saddle support.

During calculation, the load on each support is determined individually, upon which the supporting shell is calculated on the impact of the local load applied along the welding contour of the support.

3.17.22. Bracket supports of vertical vessel

Bracket support type is determined according to GOST 34233.5-2017 (see Fig. 3.104).

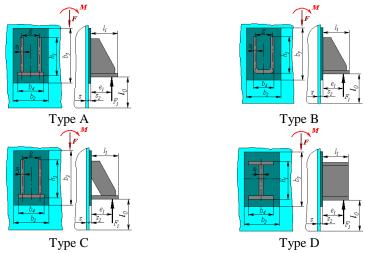


Fig. 3.104 Bracket supports types

Bracket supports can be adjoined to any cylindrical or conical shell or steep conical head of the vessel casing. Bracket support placement and dimensions determine the analysis of bearing loads on vessel components. Analysis is carried out if 2, 3 or 4 supports are present. If there are 4 supporting lugs, assembly quality must be accurately defined *Accurate mounting*. Name, code of standards and dimensions of bracket supports are set in the same way as those for cylindrical shells. Bracket supports can have no reinforcements or be supported by reinforcing pads.

Key "**Standard dimensions**" activates selection of typical support as per the conditional load, because, according to the applicable codes, not the support itself is calculated, but a vessel wall in the place of its connection.

Supporting legs	X
Component name: Supporting legs	Legs attached to: Head #1
Code: GOST R 52857.5-2007 🗸	Type of support
Calculation shell diameter, Dp: 2000 mm	Vertical OInclined
Head wall thickness, s1: 20 mm	Y - O
Calculation temperature, T: 100	
Shell reinforcement Number of supports	
Without reinforcement O Three	
Reinforcing pad O Four	
Dimensions as per GOST >>	
Supporting circle diameter, d4: 1400 mm	
Leg outside diameter, d2: 200 mm	
Leg height, h: 500 mm	
Reinforcing pad diameter, d3: 300 mm	
Reinforcing pad thickness, s2: 22 mm	s_1 d_3 α_2
Angle of arrival, Alpha2: 26.1 degree	
	$d_2 =$
Supports position angle, Teta: 0 degree	$d_d = d_1$
Baseplate width, a: 400 mm	D_6
Baseplate length, b: 500 mm	
Anchor bolts Material:	
Cr3 Properties Add	
Nominal diameter, d: 10 💌 mm	
Diameter of bolted circle, Db: 2100 mm	
Calculation pressure (without hydrostatics), p: Internal External	OK Cancel

3.17.23. Supporting legs

Fig. 3.105 Supporting legs

Supporting legs can be adjoined to the lower head of the vessel casing. Their placement and dimensions determine the analysis of bearing loads on vessel components. Analysis is carried out if 3 or 4 supporting legs are present. If there

are 4 supporting legs, assembly quality must be accurately defined $\boxed{\mathbf{V}}$ Accurate mounting

Name and dimensions of supporting legs are set in the same way as those for cylindrical shells. Supporting legs can have no reinforcements or be supported by reinforcing pads (see Fig. 3.106).

Supporting leg type is determined according to GOST 26202-84 (see Fig. 3.106).

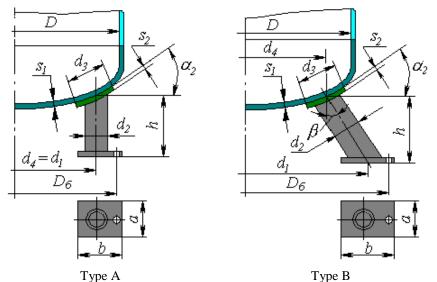


Fig. 3.106 Supporting legs types

3.17.24. Supporting lugs

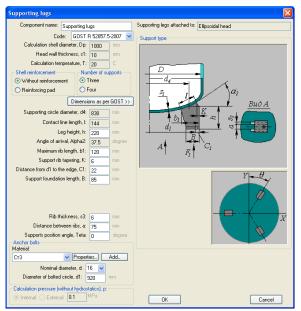
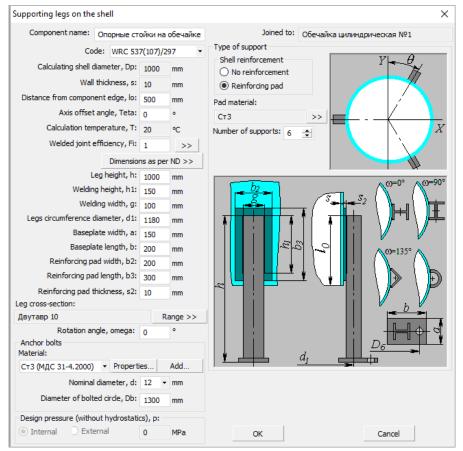



Fig. 3.107 Supporting lugs

Head lugs can be adjoined to the lower head, conical shell or steep conical head of the vessel casing. Their placement and dimensions determine the analysis of bearing loads on vessel components. Analysis is carried out if 3 or 4 head lugs are present. If there are 4 head lugs, assembly quality must be accurately defined Accurate mounting

3.17.25. Supporting legs on the shell

Supporting legs can be connected to the lower head or cylindrical shell of vessel casing. There can be any number of legs (not less than 2). Loads in the weld point of each leg are defined automatically from the analysis of statically undeterminable beam system, and are individual for each leg.

Note: The strength and buckling of the legs structure is checked simplistic, like a bar loaded with axial force.

3.17.26. Supporting ring

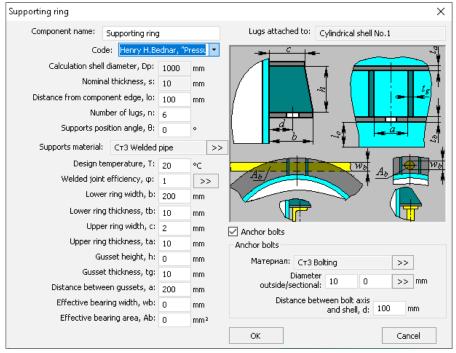
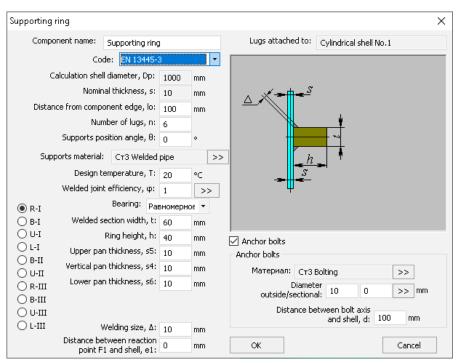
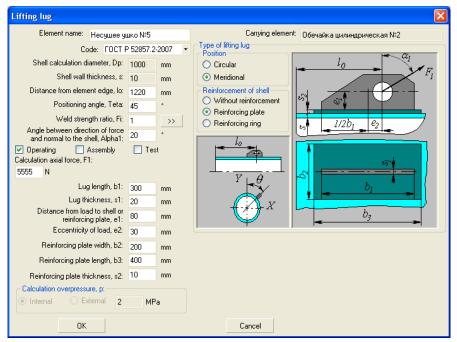
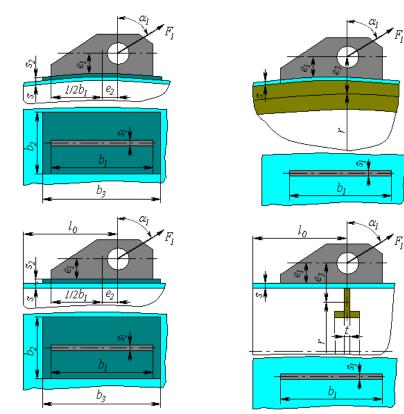


Fig. 3.109 Supporting ring as per H.Bednar

A ring support can be connected to the cylindrical shell of the vessel casing. The support is calculated as per Henry H. Bednar, "Pressure Vessel Design Handbook" [72].

A calculation according to EN 13335-3 [57], is also available, in which case the support configuration corresponds to Fig. 3.110.


Fig. 3.110 Supporting ring as per EN 13445-3

3.17.27. Lifting lugs

Fig. 3.111 Lifting lugs

Lifting lug can be adjoined to any cylindrical or conical shell of vessel casing, or to ellipsoidal (hemispherical) head. Loads and their direction must be input by user based on operation conditions. Lifting lugs can be placed both in longitudinal and transverse directions on the shell.

Lifting lug with reinforcing plate

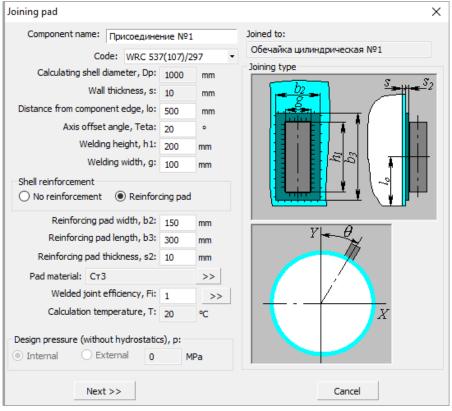

Lifting lug with reinforcing ring

Fig. 3.112 Lifting lugs types

Lifting lugs can be either without reinforcement or reinforced by reinforcing plate or ring.

When reinforced by ring, its type, placement and dimensions are set in the same way as those for <u>stiffening rings</u> of cylindrical shells (i.3.17.18). The ring is considered when analyzing pressure influence on the cylindrical shell.

3.17.28. Joining pad

Fig. 3.113 Joining pad

This component is designed for modeling of any joints of external steel structures, consoles, non-standard supports of horizontal vessels, etc, with further calculation of carrying ability of casing wall as per WRC 537(107). Component can be joined to the cylindrical shell or spherical head. Loads for joining are set similar to component «Nozzle», and can be transferred to neighboring components of vessel and its supports.

3.17.29. Trunnion

Trunnion		
Element name: Trunni	on (assembly nozzle) No.1	Туре
Joined to: Cylindr	ical shell No. 1	L_e
Code:	RD 26-02-76-88 🔻	
	Dimensions as per ND >>	
Boss diam	eter, d: 325 mm	
Trunnion wall thickn ("0", if solid tru		$\frac{S_n}{S_n}$
Distance to fla	nge, L: 483 mm	Do
Distance to force app	liaction line, l: 438 mm	
Distance between fla ("0", if one	nges, e	
Weld strength f		
Shell reinforcement		
Without reinforcement	Reinforcement pad	Positioning:
Pad diamet		Displacement, Lu:
Pad thickne	ess, sn: 10 mm	1000 mm Teta:
Design lands on transien		0 •
Design loads on trunnion		
>> P1H: 12000 N	P2H: 12000 N P2H: 14000 N	τ
✓ More P1H: 10000 N ✓ More P1H: 8000 N	P2H: 14000 N P2H: 15000 N	$L_{\underline{w}}$ $Y' = \theta$
1012 1 211 8000 N	15000 N	
	_	
$P_{l}{}^{\kappa}$		
	$P_{2^{H}}$	+
ок	1	Cancel
		Caricer

Fig. 3.114 Trunnion

This component can be joined to cylindrical shell. There are different variants of developing of this structure. If a solid boss is used, $s_1 = 0$ should be

defined. Besides, there are variants with one or two stop flanges. If there is one flange, e = 0 should be defined.

There is a possibility to define up to 3 trunnion loading cases, with consideration for changing of loads at lifting. Pressing >>> button automatically defines loads on the trunnion, if vessel weight, centroid position and point of lift are known:

Slinging diagram as per RD 20-02-76-88	X
Vessel weight at lifting, G: 13000 N Distance to the centroid at lifting, IT: 5000 mr Distance to the assembly nozzles, IC: 7000 mr	
ОК	Cancel

Fig. 3.115 Slinging scheme

For this component, export to Nozzle-FEM program is provided.

3.17.30. Additional loads

Besides loads from weight of shells, heads, fittings, etc., additional weight loads (for example, from service platforms) and force loads (for example, from adjoining pipes) can be input. **Fig. 3.117** includes an example of setting additional weight and external loads for horizontal vessels.

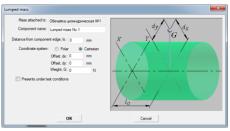
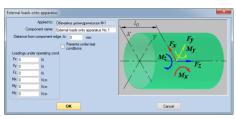



Fig. 3.116 Weight loads for horizontal vessels

Lumped mass displacement is available, after which displacement moment will be calculated automatically.

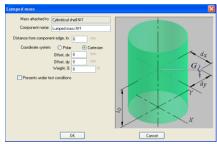


Fig. 3.118 Weight loads for vertical vessels

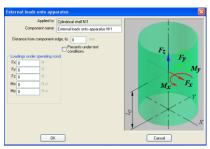


Fig. 3.119 External loads for vertical vessels

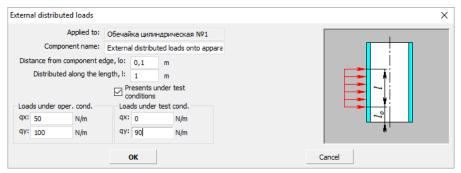


Fig. 3.120 External loads distributed along the component

3.17.31. Vessel fixing

This component is designed for consideration of non-standard fixing of vessel (that cannot be modeled via supports). These can be non-standard supports of horizontal vessels (legs or pillars), rigid steel structure enveloping the vessel (racks, apertures), as well as multilayer vessels (fixed lower nozzles act as supports).

Vessel fixing			×
Fastened component:	Cylindrical shell No.1		Y
Fixing name: Vessel fixing			
Distance from component e	dge, lo: 105 m	m	
🗹 Linear along the X	Pliant:	0 mm/N	
🗹 Linear along the Y	Pliant:	0 mm/N	
🗹 Linear along the Z	Pliant:	0 mm/N	Coordinate system XYZ
🗹 Angular around the X	Pliant:	0 °/N·m	Global Cocal
🗹 Angular around the Y	Pliant:	0 °/N·m	
🗹 Angular around the Z	Pliant:	0 °/N⁺m	Presents under mounting condition
	ОК		Cancel

Fig. 3.121 Vessel fixing

It is necessary to specify fixed degrees of freedom in a global or local system of coordinates (the local system corresponds to the parent component's coordinate system). Results of calculation will be appropriate reactions of supports.

To simulate rigid fixing by the corresponding degree of freedom, it is necessary to set the pliant equal to 0.

3.17.32. Service platform

The platform can be installed on the cylindrical parts of vessel casing, as well as on the supporting skirt of the column.

Service platform	
Component name: Service platform Nº1	Attached to: Cylindrical shell Nº1
Distance from component edge, lo: 0 mm	
Start angle of platform, Teta0: 0 degree	I_{l_1} $Y_{\theta_{0_l}}$
Platform's sector angle, Teta1: 360 degree	
Platform width, 11: 800 mm	
Platform height, h1: 1000 mm	
Bracket length, I2: 800 mm	
Bracket height, h2: 1000 mm	
Clearance between platform and shell, delta: 50 mm	
Specific weight of platform, Ga: 0.002 MPa	
Ladder availability	
Angle of positioning, Teta: 0 degree	
Y Slope, I: 3000 mm	Aerodynamics of platforms(as per As per GOST R 51273-99)
Weight per unit length: 0.3 N/mm	Approximately O Precisely
Width: 600 mm	
Presents under test conditions	
Presents under operating conditions	Aerodynamic coefficient, K: 0.85
reserve under operating contactoris	Surface area of structure, A: 4640000 sq. mm
ОК	Cancel

A variant of the platform for the horizontal vessel is a rectangular flooring, optionally fenced with railings. Weight of the platform and its wind load are applied to the horizontal shell in a given number of points (parameter "Number of rows of supporting lugs").

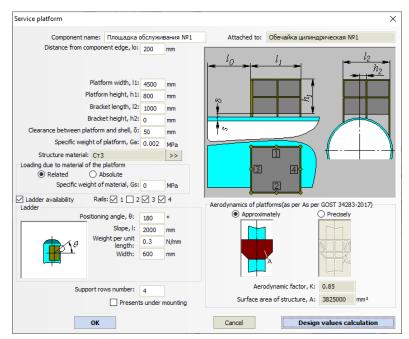
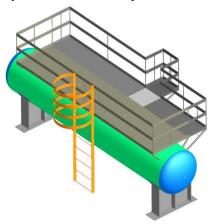
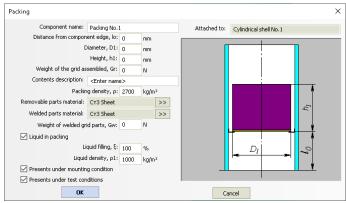
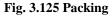


Fig. 3.123 Service platform of horizontal vessel

Combination of railings on the four sides can be arbitrary, which makes it possible to form a multi-layer floor from several platforms.




Fig. 3.124 Service platforms group


The specific weight G_a is assigned according to SP 20.13330 [35] and includes the load from the material, snow, equipment, people, etc. This load is considered to be evenly distributed over the sector of the site and is used in calculations (when determining the natural period, load on the supporting shell, etc.).

The parameter "Weight of material" is not used in strength calculations and is required only for calculating material consumption.

3.17.33. Column components

Packings, service platforms, trays, concentrated masses and external loads can be adjoined to cylindrical shells of columns. Their position, dimensions and mass (forces) are added to loads and considered in vessel strength and stability analysis under wind and seismic loads.

When calculating the weight load, the packing is considered as a complex component containing:

- welded part weighing G_w (taken into account in any design mode);
- removable part weighing G_r-G_w (taken into account in the design mode according to the options "Present under mounting/test conditions");
- liquid (if any) in the form of a conditional cylinder weighing $\rho_1 \cdot \pi \cdot D_1^{-2}/4 \cdot h_1 \cdot \xi_1$ (taken into account in operating conditions);
- filler (catalyst) in the form of a conventional cylinder weighing $\rho \cdot \pi \cdot D_1^2/4 \cdot h_1$ (always taken into account in operating conditions, in the mounting/test conditions according to the specified options)..

The table of materials used is formed taking into account the materials assigned to the welded and removable part..

Component name:					Torono attacks of the		
	Tray block M	40.1			Trays attached to:	Cylindrical shell No.1	
Distance from component edge, lo:		0	mm			1	_
Di	ameter, D1:	0	mm				
Tra	y height, h:	0	mm				
Number	of trays, n:	2					<i>(</i> 0)
Distance between trays, δ:		200	mm				~
Weight of each tray a	s a set, Gt:	0	N				6
Removable tray parts materi	I: CT3 Shee	et 🛛		>>			6
Welded tray parts materi	al: CT3 Shee	et		>>			<u> </u>
Weight of welded tra	y parts, Gw:	0	N				~
🗹 Liquid in tray						! ₌! ∏	h h
Liq	uid filling, ξ:	100	%			D_I	10
Liquid	density, p1:	0	kg/m³		}=≡ -		
Presents under mountin	g condition						
Presents under test con	ditions						
						_	

Fig. 3.126 Tray block

When calculating, a group of trays is considered as several lumped masses attached to a parent component with an equal pitch. The weight load of each tray is taken into account in the same way as for the "Packing" component.

When rendering the model, the trays are displayed conditionally. If necessary, you can combine them with the "<u>Custom Equipment</u>" component, preparing a tray of any required design in any CAD system.

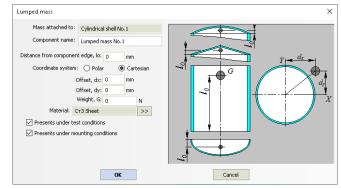
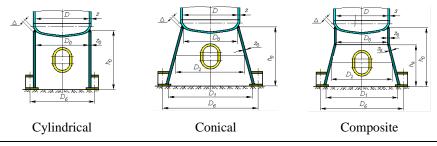


Fig. 3.127 Lumped mass

Exter	nal loads o	nto appa	aratus			X
	A	applied to:	Cylindrical shell Nº1			
	Compon	ent name:	External loads onto	apparatus Nº1		i
Di	stance from co	mponent e	dge, lo: 0	nm		
			Presents under conditions	ar test	Presents under operating condition	Fz
		ating condi	tion Loads under te			Fy
Fx:	0	Ν	Fx: 0	N		
Fy:	0	N	Fy: 0	N		$/M_y$
Fz:	0	N	Fz: 0	N		
Mx:	0	Nm	Mx: 0	Nm		M_{r} F_{x}
My:	0	Nm	My: 0	Nm		1 T
			OK			Cancel


Fig. 3.128 External loads

3.17.34. Skirt support

	blumn vessel support	No.1	Sta		ttached to: Ellipsoid	al head No.1	
	Code: GOST 34233.9-2	017	-	Design	0	0	
Ρ	arent inside diameter, D:	1000	mm	O Cylindrical	O Conical	Composite	
ι	Ipper base diameter, DO:	1000	mm				
	om edge to the skirt, hb:		mm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Base diameter, D1:	1600	mm		$D_0 \rightarrow$	<u></u>	
	Total support height, h0:		mm	<u> </u>			
	Weld cathetus, ∆:	11	mm			4	
ylindrical section o	f support			D_2	¥		
	iterial: CT3 Welded pipe		>>				
	ection wall thickness, s0:	16	mm		Di Ila Ila Ila I	/// //	
	Corrosion allowance, c1:		mm				
	Negative tolerance, c2:	-	mm	» -	D ₆	_ _	
Tec	hnological allowance, c3:	0	mm				
	elded joint efficiency, φ:	-	>>				
		-	<u> </u>	Insulation and linin	g >> 1	ength calculation model >>	
Conical section of s	upport			Transition section	Transition :	section data >>	
	terial: CT3 Welded pipe		>>	Calculation in lifting	conditions >>		
Dectorrine	Section height, hk:	1000	mm				
-	ection wall thickness, sk:		mm				
	Corrosion allowance, c1k:		mm				
	Negative tolerance, c2k:	-	mm	>>			
	nological allowance, c3k:	-	mm				
	ided joint efficiency, φk:	·	_				
	add joint officiality j qua	1	>>				
Loading	Cylindrical sectio				porting assembly		
case	temperature T, °(20	-	ter	erature Tk, °C te 20	mperature, °C 20		
Operating				20	20		

Fig. 3.129 Skirt support

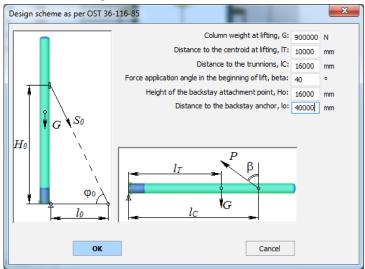
Skirt support can be adjoined to the model's lower head or to the cylindrical or conical casing shell. Support shell type is determined according to GOST 51274-99 (see Fig. 3.130).

User's Manual

Fig. 3.130 Skirt types

There is a possibility of express temperatures estimation for the support components. To do this, click the [...] button in the table of loading cases. In the dialog that appears, you can select a method for the temperatures estimation (Fig. 3.131).

Calculation temperature estimation			×
Code: Gorbachev MV "Heat and mass transfer"	NSTU, 2	015 🗾 👻	(To)
Heated end temperature, T1: Heat transfer coefficient from the side surface, α: Heat transfer coefficient from the end surface, α1: The coefficient of thermal conductivity of the section material, λ: Ambient temperature, T0:	20 100 20 20	°C ₩/(m²·K) ₩/(m²K) ₩/(m·K) °C	T_1
OK			


Fig. 3.131 Skirt components temperature estimation

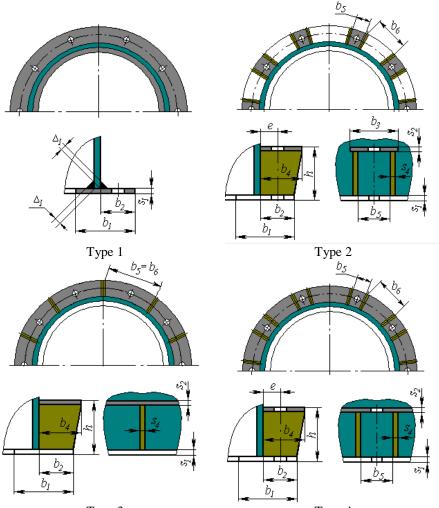
A transitional section (skirt) with a material different from the support material can be input. To set the transitional section's dimensions and material, select Transition section and press Transition section data >>

Transitional component of su	pport 🛛 🔀							
Material of support's transitional:								
03×18H11 🛛 🖌 Prope	erties Add							
Section height, hn:	500 mm							
Section wall thickness, sn:	10 mm							
Corrosion allowance, c1:	2 mm							
Negative allowance, c2:	0.8 mm							
Technological allowance, c3:	0 mm							
Circular welded joint efficien	cy, Fi: 1 >>							
Calculation temperature, Tn:	300 Cancel							

Fig. 3.132 Transitional section

Option Calculation in lifting conditions enables performing of supporting shell calculation of strength and stability against loads arising during mounting of the column, and selecting of additional furnishings. For this purpose, additional data should be defined (Fig. 3.133).

Fig. 3.133 Lifting scheme


Supporting assembly type and dimensions can be input by pressing Next >>

VESSEL STRENGTH ANALYSIS SOFTWARE

Column vessel support	×
Column vessel support Supporting assembly Skirt fittings Suppor	ting structure d D
Code: GOST 34233.9-2017	• b ₅
○ Type 1 ○ Type 1a ○ Type 2 ○ Type 3 ● Type 4	they as h
Assembly elements material: CT3 Welded pipe	
Thickness of the lower supporting ring, s1: 36	mm View View View View View View View View
Corrosion allowance, c1: 2	
Negative tolerance, c2: 0.8	
Technological allowance, c3:	
Width of the lower supporting ring, b1: 190	
Emerging width of the lower ring, b2: 140	mm
Availability of reinforcing pad Width of the upper supporting ring, b4: 460 Minimum distance between two adjacent ribs, b5: Thickness of the upper supporting ring, s2: Thickness of the upper supports of the s4: 16	
Height of supporting unit, h: 366	mm
Base plate	Anchor bolts
Concrete: B10 (M150)	Material: CT3 Bolting >>
Consider foundation pliability	
Minimum inertia moment of foundation base, IF: 1300000000 mm4 >>	Diameter outside/sectional: 48 0 >> mm Number, n: 12
Concrete foundation area, AF: 4000000 mm ²	Diameter of bolted circle, Db: 1760 mm
Irregularity ratio of soil compression, CF: 0.06 N/cub.mm >>	Bolt corrosion, cb: 0 mm
	OK Cancel Apply

Fig. 3.134 Supporting assembly

Supporting assembly type is determined according to GOST R 51274-99 and GOST 24757-81 (see Fig. 3.135).

Type 3

Type 5

Fig. 3.135 Supporting assembly types

Option Consider foundation pliability enables considering influence of soil flexibility on natural vibrations period of column. At the active check, it is necessary to define area and inertia moment of foundation base, as well as irregularity coefficient of soil compression. To define geometric characteristics, there is an assistant button, which enables automatic calculation of typical foundation parameters.

Automatic calculation	of the foundation geome	etric paramete	ers	×
Foundation type				
Square				Ь
Rectangular				<mark> ≪ ॅ⇒</mark>
Oircular	Side, a:	5000 mm		
Orbicular	Side, b:	3000 mm		e
	Minimum inertia moment:	1125000000	mm4	
	Area:	15	sq. m	
				1
ОК	Car	ncel	Desig	n values calculation

Fig. 3.136 Foundation geometric parameters

When the check is off, the foundation is modeled as built-in.

Supporting shell fittings can be input by pressing Next >.

			Skirt fittings					4
Name	Inside diameter, d, mm	Wall thickness, sd, mm	Distance from the base plate, hd, mm	Height, hu, mm	Angular position, 8,	Length of external part, 11, mm	Length of inside part, 13, mm	
Add fitting gs material: Welded pipe ittings reinfor nd welding e>	>> ce the cross sect		ete fitting					

Fig. 3.137 Supporting shell fittings

Any number of fittings (including stretched), as well as their dimensions and placement, can be input using Add. Copy... During supporting shell analysis, all sections will be checked and most unsafe section will be determined.

The option "Fittings reinforce the cross section" controls the way of defining the skirt cross section characteristics (when this option is enabled, the cross section is formed taking into account the walls of the fittings).

Support structure (pedestal), if present, can be input by pressing \bigvee Availability of supporting structure).

VESSEL STRENGTH ANALYSIS SOFTWARE

Column vessel's support					×
Column vessel's support Supporting assembly Supporting	ng shell's fittings Supporting	g structure			4 Þ
Availability of supporting structure Geometry of supporting structure Cylindrical shell Oricial shell Orientation of elements Orientation of elements Upper level, h1: 100 mm Upper level, h2: 900 mm Orientation of elements Orientation of elements Upper level, h2: 900 mm Orientation of elements Orientation of elements	g shelfs fittings Supporting Plate Upper plate Upper plate Upper plate Upper plate Filing with bonds Absent Beam Brace type 1 Brace type 1 Brace type 2 Brace type 3 Brace type 3 Brace type 4 Cross Cross with upper beam Cross with upper beam Cross with upper beam Cross with two beams Lower knee-brace Upper knee-brace Cross sections Lows: Beams: Braces:	Brace with lower I Frace with lower I Frace with lower I Frace with lower I Frace with upper Frace with upp	beam type 2 beam type 2 beam type 3 beam type 4 beam type 1 beam type 2 beam type 3 beam type 2 eams type 3		
Along the row Across the row					
			ОК	Cancel	Apply

Fig. 3.138 Column support structure

The support structure can be in the form of cylindrical or conical shells or metal structure with a foundation of vertical or tilted poles.

Variant «Rigid weightless structure» is designed for cases, when pedestal parameters are not known yet, but its height is known. In this case, the pedestal is modeled by rigid link and causes no influence on the vibration period. Wind loads are calculated with consideration the pedestal height.

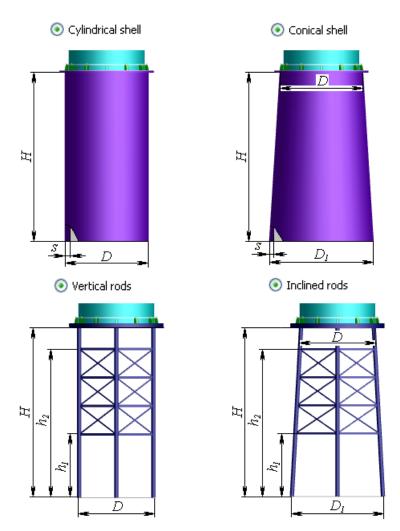


Fig. 3.139 Support structure types

eneral data								
		at exchanger No.1 ST 34233.7,2-2017		nce of baffles in t Maximum tube sp tubesheet an	ubular space an between d baffle, I1R: 400	mm		
Co Ni Techno Longit	Materiat Cr3 1 Inside diamete Wall thickne rrosion allowanc egative toleranc logical allowanc	Welded pipe Standard dimensi et. D: 1000 mm r, Do: 1020 mm et. d: 2 mm et. c2: 0.8 mm et. c3: 0 mm ath.L: 2000 mm	>> Maximi ons Anc Baffle Calculat	ım tube span betı Baff	veen baffles, 400 12R: 400 le thickness: 10 Cr3 Welded pipe 35 Bolting ng ne tube sheet	mm mm >>	First tubesheet clamp By welding into the casing Though flange joint	Second tubesheet clamp O By welding into the casing Though flange joint
As: Insulation a Loading	sembly temperation	ure, t0: 20 °C			Tube-side, tub		Flange tubesheet welded to the shell Shouldered flange tubesheet welded to the shell Flange tubesheet welded to the end shell Tubesheet welded in flange Tubesheet welded between	Flange tubesheet welded to the shell Shouldered flange tubesheet welded to the shell Flange tubesheet welded to the end shell Tubesheet welded in flange Tubesheet welded between
case	Pressure pM, MPa	Tempera Design, Ts		Pressure pT, MPa		rature, °C Mean, tT	flange and shell $K_{c}=1.7$	flange and shell K _r =1,7
Operating	1	60	40	1	60	40	$ \frac{\alpha_{\sigma}-1, r}{r} $	$ = \frac{1}{\sqrt{2}} \frac{1}{\sqrt$
Steaming	0	120	100	0	120	100		
Sh	ell-side space fill	ing>>			Tube-side space fil	ing >>	<u>K_e=1,7</u>	<u>K_g=1,7</u>
							< Назад Далее	> Отмена Справка

3.17.35. Heat Exchanger with stationary tube plates

Fig. 3.140 Heat Exchanger Data

Heat exchanger casing wall temperature is used to determine allowable stress on the casing. Average casing wall temperature is used to determine the linear expansion and elasticity factors. Insulation and lining can also be input.

<u>Operation environment properties</u> in tubular space are determined by the heat exchanger's parent component or (if there is no parent component) using the "General Data" setting. <u>Operation environment properties</u> in inter-tubular space are considered when calculating weight of the casing's daughter components.

Casing and tube plate joint structure according to GOST 34233.7-2017 (RD 26-14-88) are shown in the Fig. 3.141.

A heat exchanger can be calculated according to ASME VIII-1. In this case, variants of structure are shown in the Fig. 3.142.

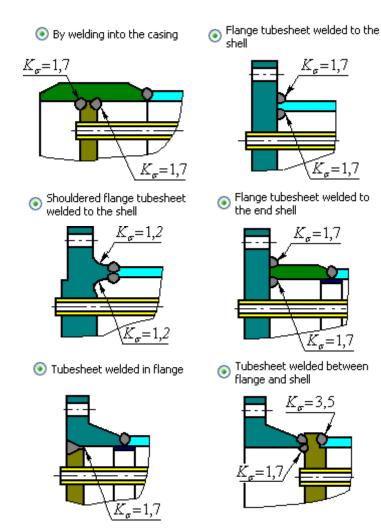
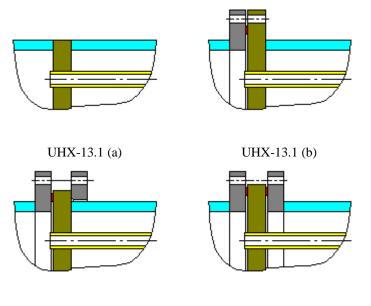



Fig. 3.141 Tube plate joints

UHX-13.1 (c) UHX-13.1 (d)

Fig. 3.142 Tube plate fixing as per ASME VIII-1

Properties of the <u>tube plate joint</u> can be input by pressing $\boxed{\text{Next} >}$ (see i.3.17.36).

3.17.36. Tube plate joint

First tubesheet connection		
Flange of chamber	Flange of shell	Flange type
Florge of chamber Material: Tricenal diameter, Di Todal allowance, ci Todal allowance	Material: Cr3 Properties Add External dameter, Dn: 100 mm Flange height, ht: 10 mm	Flage type ③ 1 - Butt-welded ○ 1 - Butt-welded Carlot - State welded Flage series ○ Plat ○ Dowel-slot ○ Dowel-slot ○ Dowel-slot ○ Dowel-slot ○ Table - State
Internal dianeter, D: 0 mm Wall thickness, si: 0 mm Material: Cr3 VProperties Add Pastoners O Bolts Studs Stud groove Material: Stud groove Staterial: Stud groove Studied dianeter, di 0 mm Number, ni 0 mm	Tubesheet thickness, spi 10 mm Total allowance, cpi 2 mm Calculated temperature, Tpi 20 C Adjacent element: j that exchange shall Internal dismeter, Di 1000 mm Wall thickness, si 10 mm	Calculated temperature of flanges, T: 20 C
Castet Gastet Material: Properties Add Pesies no FOCT 738 c relepatorturo no Llopy A ao 65 earesu y Dimensions es per GOST >> Mean diameter, Don: 0 mm Widdt, bni 0 mm	Mətəridi: _{Cr3} <u>→</u> Properties, Add	Flange dimensions as per GOST >> Take a shell flange as a chamber flange
	(< <u>Назад Далее</u> Отмена Справка

Fig. 3.143 First tube plate joint

If a tube plate is connected through a flange joint, data are input in the same way as those for a flange joint, according to GOST 34233.4-2017 (RD 26-15-88). Standard flanges can be selected.

Option "Transitional shell" is available for all variants of design of the tube sheet. When this option is activated, an additional window appears with parameters of the transitional shell (bushing), Fig. 3.124.

Transitional shell extended parameters Material: Cr3 >> Inside diameter, D: 1000 mm Thickness, s1: 20 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0 mm Length, 11: 200 mm	
Inside diameter, D: 1000 mm Thickness, s1: 20 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0 mm >> Technological allowance, c3: 0 mm	×
Inside dameter, Di 1000 mm Thidness, s1: 20 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0 mm >> Technological allowance, c3: 0 mm	
Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0 mm >> Technological allowance, c3: 0 mm	
Negative tolerance, c2: 0 mm >> l ₁	
Technological allowance, c3: 0 mm	
Length, 11: 200	
200 mm	
Design temperature, T1: 20 °C Insulation and lining >>	
OK	

Fig. 3.144 Parameters of the transitional shell

Properties of the second tube plate joint can be input by pressing Next > . Data on the second tube plate is assigned equally to the first tube plate. You can quickly copy data from the first tube plate by pressing button "Accept the second connection as the first". <u>Tube bundle properties</u>, properties of tube mounting within the plate and pass partitions (if present) can be input by pressing Next > (see i.3.17.37).

3.17.37. Tube bundle properties

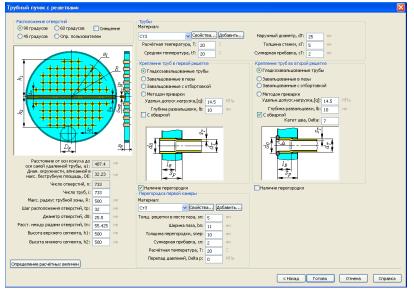


Fig. 3.145 Tubes bundle with plates

Position of passages in the tube plate can be set manually or automatically. To set position automatically, position angle of opening axis, opening spacing and diameter, radius of tubular space, and heights of upper and lower sections must be input. Properties such as the number of openings, distance to the most distant pipe's axis and the maximum diameter fitting within the tubeless area will be calculated automatically.

The position of symmetry axis of tube bundles can be changed by selecting Offset (Fig. 3.146)

90 degrees

60 degrees

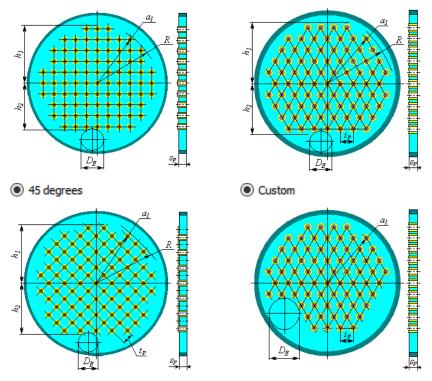
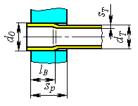
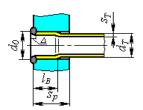
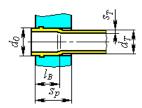
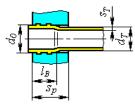




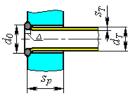
Fig. 3.146 Holes layout

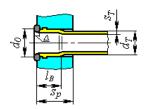
At non-standard parameters of tube bundle, it is possible to compose it in the interactive <u>designer</u> mode.


Constructions of tube holders in the sheet as per GOST 34233.7-2017 (RD 26-14-88) are shown on Fig. 3.147

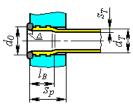


Smoothly rolled


Smoothly rolled, with seal welding

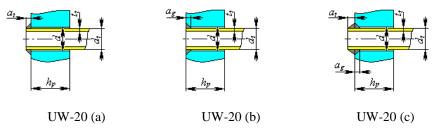


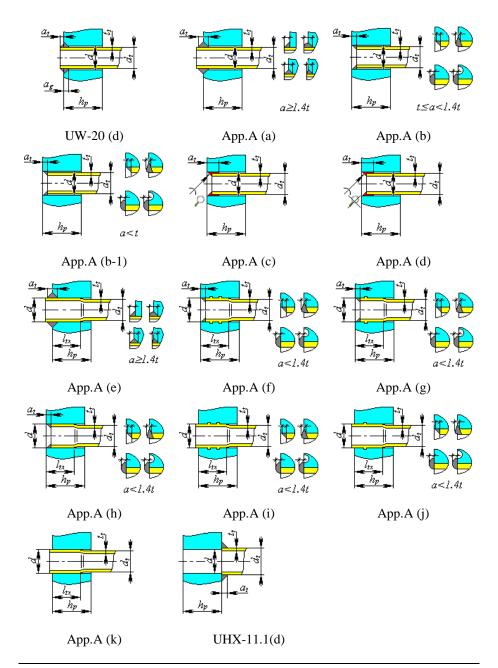
Rolled in one groove



Rolled in two and more grooves

Rolled in one groove, with seal welding




Rolled in two and more grooves, with seal welding,

Welded without rolling

Fig. 3.147 Tube holders in the sheet as per GOST 34233.7-2017

At calculation of the heat exchanger as per ASME VIII-1, possible types of holders are shown on Fig. 3.148.

User's Manual

Fig. 3.148 Tube holders in the sheet as per ASME VIII-1

Optionally it is possible to add <u>bellows</u> (i.3.17.38) and (or) <u>expander(s)</u> (i.3.17.39) on the casing.

The heat exchanger will be displayed after all required data are input and saved by pressing Finish. Heat exchanger properties can be edited through a tabbed dialog box.

3.17.37.1 Handling with tube sheet designer

Designer enables creation of the tube bundle and calculation of its properties, when placing the tubes by method that is not described in the i. 3.17.37. To activate it, select the "Custom" option in the toolbar "Position of holes" A window specified in Fig. 3.149 will open.

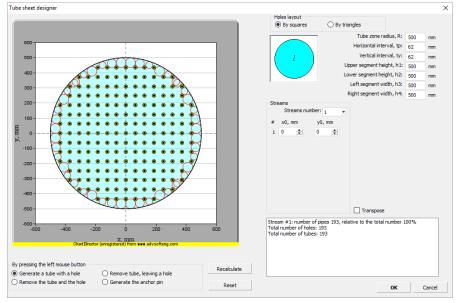


Fig. 3.149 Tube sheet designer

For window with the tube sketch, the following operations are available:

- Image scaling- by mouse wheel;
- Sketch moving press and hold down left button of the mouse, and move it;

Commands and parameters:

Name	Description	Sketch
By squares	Rows of holes are not displaced	
By triangles	Each row of holes is shifted relative to the previous one for a half of the horizontal pitch	
By circles	Holes are arranged in concentric circles, holes on one circle are spaced with equal pitch, rounded to an integer number of holes	
t _p , t _y	Horizontal and vertical pitches of rows arrangement	
R, h ₁ , h ₂ , h ₃ , h ₄	Enables creation of zone, beyond which arrangement of pipes is excluded	00000000000000000000000000000000000000

Number of flows, configuration Enables creation of pipeless zones for separating walls, for typical configurations of multiflow heat exchangers

x ₀ , y ₀	Provide more precise positioning of the tube bundle, belonging to the 1 st flow, if the automatic
	arrangement does not furnish the desired result
	uesileu lesult

UL	Distance between axis for pipes in
O_L	the area of the 1 st separating wall

D_L Distance from axis of tube sheet to axial line of 1st separating wall

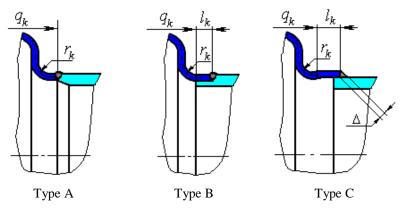
90° rotation of the created tube sheet

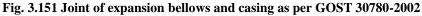
Create a tube with hole If the tube already exists at the point with selected coordinates, than nothing happens, otherwise, the point gets an attribute "tube" *****

4444

Transpose

Delete tube, remain hole	A hole will be included in calculation of the sheet peripheral zone, but the tube will be excluded from calculation of axial force on the casing.	\odot
Delete tube and hole	There is no hole in this point, it cause no influence on calculation of peripheral zone (used for creation of tubeless zones)	×
Create anchor stud	A hole will be included in calculation of the sheet peripheral zone, but the tube will be excluded from calculation of axial force on the casing	•
Update	Rebuilding of tube bundle is performed (coordinates of points, where the holes will be placed, are outlined)	
Reset	All additional signs of points are cleared	


3.17.38. Heat Exchanger with expansion bellows on the casing


To include the expansion bellows in heat exchanger model, select an appropriate checkmark in the "Expansion bellows" tab (Fig. 3.150).

Expansion bellows				Σ
Expansion pipe material:	Type of junction to the sh Type a	nell as per GOST 30780- O Type b	2002 O Type c	
Maximum internal diameter, Dic 1100 mm Minimum internal diameter, die 1000 mm Corrosion allowance, ct: 2 mm Negative allowance, ct: 0,68 mm Technological allowance, ct: 0 mm Length of one section, qiz Mumber of sections, ni: 1 Distance from the ach beginning, Lic 0 m Radius of curvature, ric 20 mm				
Circular weld strength ratio, Fit: 1 >> Calculated temperature of well, T: 20 C Weld processing O Weld's ground face Weld's rough surface Weld's rough surface Weld's rough surface O To internal diameter O To internal diameter		Estimation of calcu	lation values	
				<Назад Готово Отнена Справка

Fig. 3.150 Expansion bellows

At calculation of heat exchanger as per GOST 34233-2017, bellows type with casing is determined according to GOST 30780-2002 (Fig. 3.151).

At calculation of heat exchanger as per ASME VIII-1, possible design variants of expansion joints as defined according to section MANDATORY APPENDIX 26 (Fig. 3.152).

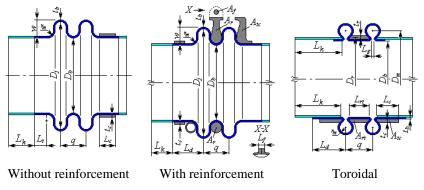
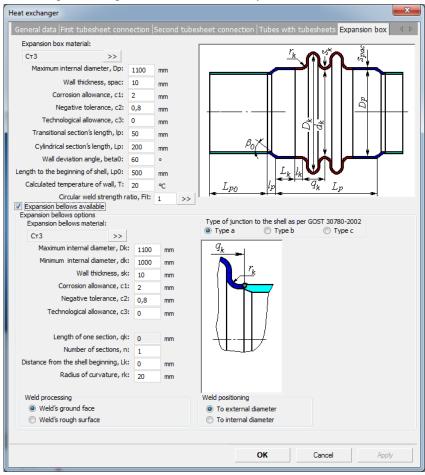



Fig. 3.152 Design variants of expansion bellows as per ASME VIII-1

3.17.39. Heat Exchanger with expansion box in the casing

To include the expansion box in heat exchanger model, select an appropriate checkmark in the "Expansion box" tab (Fig. 3.153). In the presence of expansion box on the expander, its parameters are set similarly i. 3.17.38.

Fig. 3.153 Expansion box

When calculating the heat exchanger, the flexibility of the expansion box is taken into account. If the expansion box is made with bellowed sides, use this option (Fig. 3.154).

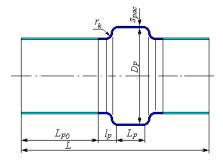


Fig. 3.154 Expansion box with bellows on the sides

Do not use the "Expansion box" option to define the distribution manifold (without cutting the casing section under it) - for this, use the "Cylindrical jacket" component.

3.17.40. Heat Exchanger with U-shaped tubes

Data input is similar to heat exchangers with stationary tube plates. The tube plate must always have a pass partition and tubes must be arranged symmetrically.

Tube sheet for this heat exchanger can be performed similar to i. 3.17.35.

Besides, as per GOST 34233.7-2017, a variant of tube sheet clamped between the flanges is additionally available (Fig. 3.155)

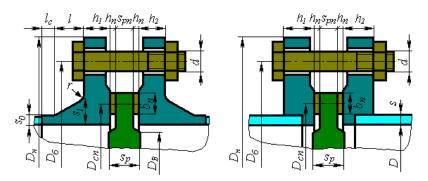
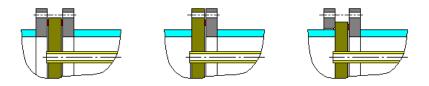



Fig. 3.155 Tube sheet between flanges

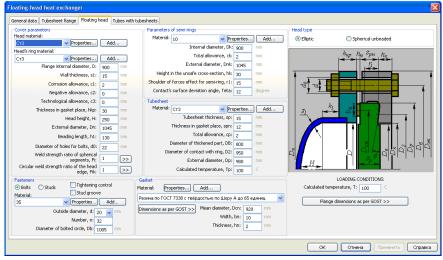
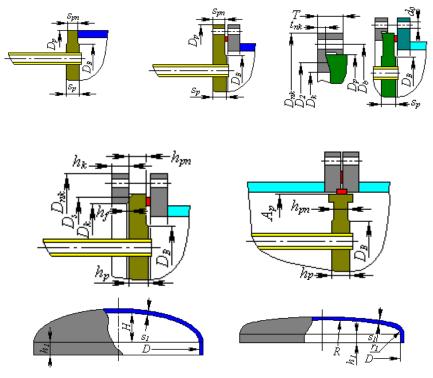
In accordance with ASME VIII-1, additional configurations are available (see Fig. 3.156).

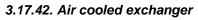
Fig. 3.156 Tubesheet types according to ASME VIII-1

The "Electric immersion heater" option allows the calculation of the heater base plate as a perforated flat cover.

3.17.41. Heat Exchanger with Floating Head

Data input is similar to heat exchangers with stationary tube plates. Properties of the floating head are input instead of second tube plate (Fig. 3.157).


Fig. 3.157 Floating head

At calculation of heat exchanger as per GOST 34233.7-2017, the floating head may include elliptic head and spherical unbeaded head.

Possible variants of floating heads are shown on the Fig. 3.158

Fig. 3.158 Types of floating heads Version of head corresponds to section "<u>Bolted heads</u>".

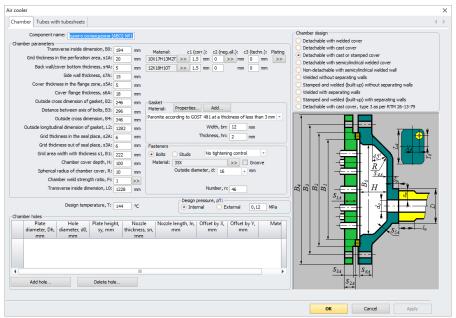
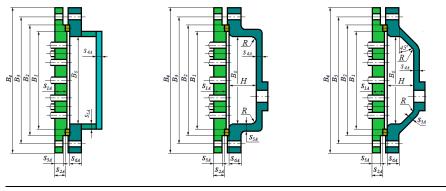
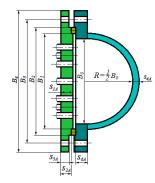
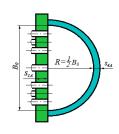
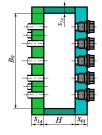



Fig. 3.159. Distribution chamber

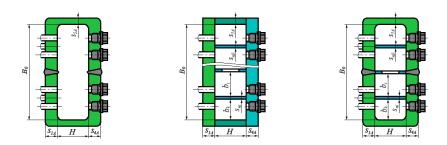

Air-cooled heat exchanger is created as a model component. This component cannot be joined to anything. No other components can be joined to it as well in the current program version. Air cooled exchanger consists of two identical distribution chambers (Fig. 3.160) and tube bundle (Fig. 3.162). Two heat exchanger chambers can be set independently and have a different type. Special nozzle type can be attached to the chamber.




Bolted with welded head

Bolted with cast head

Bolted with cast or stamped head


Bolted semicylindrical welded head

Non-detachable semicylindrical head

with

with welded

Welded without separating walls

Stamped	and	welded	Welded	with	separating	Stamped and welded with
without sep	parating	walls	walls			separating walls

Fig. 3.160. Types of distribution chambers

For welded components of heat exchanger, you can assign a negative tolerance, cladding.

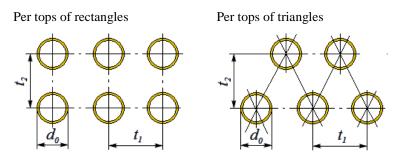


Fig. 3.161. Types of tube bundles

Upon pressing \underbrace{Next} button, tube bundle parameters can be defined, similar to i. 3.17.35.

Air cooler			×
Chamber Tubes with tubesheets			4 Þ
Position of holes Per tops of rectangles Per tops of triangles Per tops of triangles		Pipes Material: Cr3 >> Calculation temperature, T: 20 °C Outside diameter, dT: 25 mm Wall thickness , sT: 5 mm Total allowance, cT: 2 mm Pipe anchoring in the grid	
d_0 Location parameters		Pipe ancroning in the gind Smoothly beaded pipes Beaded in one groove Beaded in two or more grooves By welding method	
Distance between grids, L: 1000	mm	Allowable specific load, [q]: 39,2 MPa	
Longitudinal pitch of holes arrangement, t1: 40	mm	Expander depth, IB: 40 mm	
Transverse pitch of holes arrangement, t2: 40 Number of holes, n: 195 Number of pipes, i: 1 Diameter of holes, d0: 25,5	mm	With welding Weld cathetus, Delta: 10 mm	
Estimation of calculation values			
		OK Cancel Apply	

Fig. 3.162. Tube bundle

If there are screw plugs in the chambers (Fig. 3.163) they can be calculated according to [34].

	🗹 Plugs pres	ence	
	Plugs		
4	Material:	35 Bolting	>>
		Outside diameter, dnp:	10 • mm
		Groove diameter	, d1: 9 mm
		Plug gasket groove depth	1, cp: 0 mm
		Working thread length,	hnp: 9 mm
	Gasket Material:		
	Rubber acc	ording to GOST 7338 with a	Shore A less th >>
d D	Out	side working diameter, Dpn	10 mm
	In	side working diameter, Dpv	9 mm
		Thickness, hn	1 mm

Fig. 3.163. Screw plugs in the chamber

The outer frame can be set according to Fig. 3.164 (it is taken into account only in the visualization of the model and in the calculation of the metal consumption table).

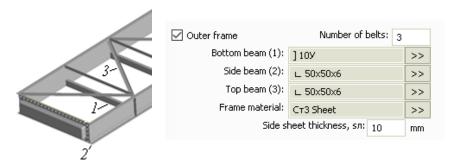


Fig. 3.164. External air cooler frame

3.17.43. Nozzle of the air cooler chamber

This component can be attached to the back wall of the cast/forged air cooler chamber, to the rear surface of the cylindrical chamber, to the back or side surface of the box chamber. Input data of tie-in into the cylindrical chamber are set similarly to the component <u>"Nozzle"</u>. For tie-in into the flat wall, the dialogue looks like Fig. 3.165

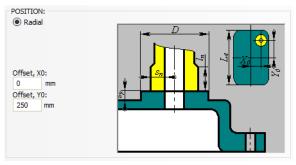


Fig. 3.165 Nozzle of the air cooler chamber

3.17.44. Cylindrical jacket

A cylindrical jacket can be joined to any cylindrical shell of the existing model (Fig. 3.166). Component name, code of standards, material, dimensions, weld strength factors and load properties for jackets are set in the same way as those for cylindrical shells. Jacket placement within the model is determined by the jacket's adjoining component and the distance from left (bottom) edge (toward Z-axis). Supports, nozzles, stiffening rings and other components can be adjoined to the jacket. Jacket pressure, p₂, is transferred to adjoining components, and vice versa. The jacket cannot be placed outside the parameters of the shell on which it is placed.

Cylindrical jacket	X
Element name: Cylindrical jacket No.1 Carrying element: Cylindrical shell No.1	Jacket design • a - cone junction • b - ring junction
Code: GOST R 52857.8-2007 ♥ Jacket material: TT3 ♥ Properties Add Distance from element edge, lo: 100 mm Jacket internal diameter, D2: 1200 mm Wall thickness, s2: 10 mm Corrosion allowance, c1: 2 mm Negative allowance, c2: 0.8 mm Technological allowance, c3: 0 mm Jacket length, l: 1000 mm	$ \begin{array}{c} \text{S} \\ \text$
Longitudinal weld strength ratio, hip: 1 >> Circular weld strength ratio, Fit: 1 >> Calculation temperature, T: 20 C Mean vessel wall temperature, Tcp: 20 C Mean jacket wall temperature, Tcp2: 20 C Calculation pressure in jacket (without hydrostatics), p2: O Internal External 0.1 MPa	Insulation and lining >> Space in jacket Space with fluid Space filling ratio (under operating conditions); Name of operating fluid: Center value> Density of operating fluid: Test pressure: 0.5 MPa Sulfurated hydrogen environment Apparatus group: WK Cancel Estimation of calculation values

Distance from the jacket's mid-wall to the vessel's external side: e0 = 95 mm

Fig. 3.166 Cylindrical jacket

Properties of inner jacket environment test properties without supporting shell can be input.

Structure of jacket and shell joint is determined according to GOST 34233.8-2017 (GOST 25867-83) (see Fig. 3.167).

Volume and weight calculation of the jackets content is possible only using the fill factor.

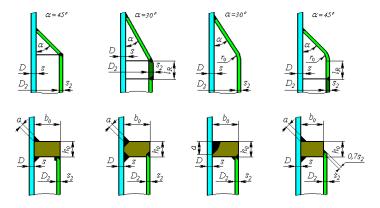


Fig. 3.167 Jacket types as per GOST

Cylinder jackets can have bellows (Expansion bellows) to reduce loads from temperature deformations.

It is possible to calculate jacket as per ASME VIII-1. In this case, variants of connection with casing specified in Fig. 3.168 are taken.

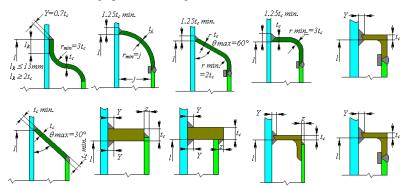


Fig. 3.168 Jacket types as per ASME VIII-1

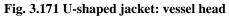
3.17.45. U-shaped jacket

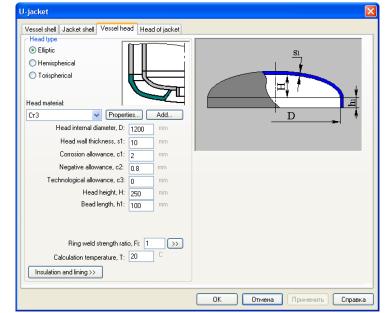
U-shaped jackets are created using a multi-page dialog and include the following components:

• Vessel shell;

- Jacket shell;
- Vessel head;
- Jacket head.

Jacket and vessel joint data are input similarly to those for cylinder jackets. Jacket and vessel head properties are input in the same way as those for dished heads.


Element nam: Important information Code: GOST IN 52657.92007 Vestelf is thell reported. Add. Shell interned downero. D: 1000 mm Construction advance. C: 102 mm Negative allowance. C: 102 mm Conduction allowance. C: 102 mm Conduction develop toto. Fp1 Coldution reperature. Tr. 20 Coldution totol typo totoloci. p. Or lensel 1 Spiel anderoit. Insulation and tring >> Spiel anderoit. 1 Spiel anderoit. 1 If Constance of the infight. It 100 mm 1	J-jacket	
Code (00151 H 52657.8200") Venetal And Inspected Code (00151 H 52657.8200") Shell infernid dameter, D: (1000 min) Shell with histores, t: (100 min) Shell with histores, t: (200 min) Negative allowance, c: (200 min) Cordad weld sterright ratio, FR [(200 min) Codadwice megature, I: (200 min) Codadwice steright ratio, FR [(200 min) Codad weld steright ratio, FR [(200 min) Spiel gradit (min) Spiel gradit (min) Spiel gradit (100 min) Coda schori weld, trappit, H: (200 min) Spiel gradit (100 min) Number closit, ri (200 min) Number closit, ri (200 min) Spiel gradit, Izo (200 min) Number closit, ri	Vessel shell Jacket shell Vessel head Head of	jacket
Vested internad annexe. D: 1000 Shell internad annexe. D: 100 Shell internad annexe. D: 100 Constain allowance. d: 2 Shell internad annexe. D: 100 Constain allowance. d: 2 Cabulation tempetature. T: 200 Constain tempetature. T: 200 Constained annexe. 10 Spaid patiential. 10 Tord station tempetature. T: 200 Spaid patiential. 10 Tord station tempetature. T: 200 Vest catheture. T: 200 Costs section whight. R: 200 Spaid andetial. 10 rm Number of coile. rt. 7 7 7 Spaid andetial. 10 rm Spaid andetid. Fib. 7	Element name: U-jacket No.1	Jacket design
Verset and material Cr3 Verset and material Cr3 Shell with thickness, r: 10 mm Concision allowance, c2: 10 mm Concision allowa	Code: GOST R 5285	7.8-2007 🗸
Shell with rich dameter, D: 1000 mm Chords and Wards, C: 10 Chords and Wards, C: 10 Negative allowance, C: 00 Shell wight, D: 000 mm Conclusion weld stempth with, Fei [Calculation temperature, I: 00 Coldation temperature, I: 00 Sprid andretis Inculation and tring >> Sprid andretis Sprid andretis Momber doub, r. 10 Number doub, r. 7 Number doub, r. 10 Sprid andretis, I: 00 Cost section width, triate, Fdb 1 Sprid andretis, I: 00 Cost section width, triate, Fdb 1 Sprid andretis, Fdb 1	Vessel shell material:	
Shell wall hickness, # 100 m Consism allowance, ct: 2 m Negetive allowance, ct: 2 m Technological allowance, ct: 2 m Solid length, t: 300 m Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Cincular weld steergth ratio, Ft(1) 2 Cincular weld steergth ratio, Ft(1) Spraid motionic 10 10 10 Cincular weld steergth ratio, Ft(0) 1 2 Cincular weld steergth ratio, Ft(0) Cincular weld steergth ratio, Ft(0) 1 2 Cincular weld steergth ratio, Ft(0) 2		
Constain allowance, cf: 2 m Negative allowance, cf: 8 m Technological allowance, cf: 8 m Shell length, L: 2000 m Longbudinal weld steerngth noto, Fe(1) Calculation temperature, T: 20 C Calculation temperature, T: 20 C Spiral motion: Spiral motion: Vield cathetus, at 10 m Number of coles, rx 7 Spiral motions, Fi0 Calculation weld strength ratio, Fi0 T	1000	
Negative adovance. c2 0 m Technological allowance, c3 0 m Longbuckni weld steeright ratio, Fet 20 m Caculation tempedures: [1] 20 m Caculation tempedures: [2] 20 m Caculation tempedures: [2] 20 m Caculation tempedures: [2] 20 m O Internal 1 MPa ming >> Spid addition External 1 MPa Videl stipial Insulation and Tring >> Spid addition Spid addition Spid addition External 1 MPa Insulation and Tring >> Spid addition External 1 Max Insulation and Tring >> Spid addition External 1 Max Insulation and Tring >> Spid addition External 1 Insulation and Tring >> Insulation and Tring >> Spid addition 1 1 1 Insulation and Tring >> Spid addition, t20 1 1 1 Insulation and Tring >>	10	
Technological allowance, c3. mm Shell length, L. 2000 Longitudin tengesht, Figitaria Since and the second seco		
Shell length, L 2000 mm Longhudhal weld tempth rate, Fe(1 >>> Calculation temperature, T: 20 Calculation weld strength ratio, Fi0: 1 Calculation weld strength ratio. Fi0: 1 Calculation weld strength		
Longibudind weld steergth ratio, FR Cocidar weld steergth ratio, FR Cocidar weld steergth ratio, FR Cocidar weld steergth ratio, FR Spiral material Spiral material Spiral Spiral material Spiral material Spiral		
Circular weld sterright ratio, Fit >>> Calculation temperature. T: 20 Calculation temperature. T: 20 Calculation temperature. T: 20 Construction temperature. T: 1 Spiral proteints: 1 Spiral proteints: 1 Spiral moteriat: 100 Cross section height, K: 100 Number of colin, rit 7 Spiral proteints: 100 Cross section height, K: 100 Number of colin, rit 7 Spiral proteints: 100 Cross section height, K: 100 Cross section height, K: 100 Number of colin, rit 70 Spiral proteints: 100 Calculation weld sterright ratio, Fk0: 1		
Calculation temperature, T: 20 C Calculation temperature, T: 20 C Contaction presture (which if tydostacic), pr- ion (which if tydostacic), pr- Cross sectors which, trian (which if tydostacic), pr- Cross sectors which (which if tydostacic),		
Calculation pressure (without hydrostricts) pr include spiral landscale and limiting >> Spiral notenial Spiral notenial Spiral notenial Spiral notenial Spiral notenial Spiral notenial Coss section wight, the go mm Coss section wight, the go mm Coss section wight, the go mm Coss section wight, the go mm Calculation weld strength ratio. F40: 1 >>		
Image: Spin and the spin a		
Spriel proteinter Spriel material: ISTC V Properties. Add Coss section height, k 100 mm Cross section height, k 160 mm Weld colfectus, at 10 mm Number of colis, nr 7 Spriel piche, kt 200 mm Cabulation weld strength ratio, F40. 1 >>		dPa
Spral moteriat ISTC Properties. Add Cross section height, h: Cross section widh, t: 00 mm Wind cathets, a: 10 mm Number d colis, r, 7 Spral pitch, ts: 20 mm Calculation weld strength ratio. FD: 1 >>		nsulation and lining >>
Iffic Properties Add Closs section height, tr 00 mm Closs section height, tr 00 mm Weld cathetus, at 10 mm Number of cells, rt 7 mm Catulation weld strength ratio, F40. 1 >>		
Spiel altrit, loc 100 mm Cross sectors Might, lk 60 mm Weld carbetus, at 10 mm Number close, rc 7 Spiel plehtus, 200 mm Calculation weld strength ratio, Fi0: 1		
Cross section height. h. 60 mm Cross section widh. t. 60 mm Weld catheur, at 10 mm Number d coise, r. 7 Spiral pitch, ts: 200 mm Calculation weld strength ratio. FR: 1 >>		
Cross section width, t Weld cathetus, a: 10 mm Number of cols, r; 7 Calculation weld strength ratio, F40: 1		
Weld cathetur, at 10 mm Number d cols, rr. 7 Solial pich, tw. 200 mm Calculation weld strength ratio, FR		
Number of coite, rr. 7 Spiral pitch, tr: 200 mm Calculation weld strength ratio. FØ: 1 >>		
Spiral pitch, ts: 200 mm Calculation weld strength ratio. F00 1 >>	10	
Calculation weld strength ratio, FR 1 >>>		
		>>> ••••••••••••••••••••••••••••••••••
		ОК Отмена Приеденить Справка


Fig. 3.169 U-shaped jacket: vessel shell

U-jacket Vessel shell Jacket shell Vessel head Head of jacket		
Jacket parameters Shell material:	Jacket design	Junction design Type a Type c Type b Type d
Shell internal diameter, D.2: 1200 mm Shell wall thickness, a2: 10 mm Corrosion allowance, c1: 2 mm Negative allowance, c2: 0.8 mm		$\alpha = 45^{\circ}$
Technological allowance, c3: 0 mm Shell length, L2: 2/100 mm Central zone diameter, d1: 200 mm		
Longitudinal weld strength ratio, Fp: 1 Croular weld strength ratio, FF: 1 Calculation temperature, T: 20 Mean viset and temperature, Top 20 Mean jacket wait temperature, Top 20 Calculation pressure in placket (without hydiontatic), p.2 @ Internet	Space in jacket	Insulation and lining >>
Distance from the jacket's mid-wall to the vessel's external side, e0: 95 mm	Jacket filling ratio (under operating conditions!): Name of operating fluid:	100
	Density of operating fluid: Kind of test: Test pressure: Sulfurated hydrogen environment	Hydrotesting 0.5 MPa
Estimation of calculation values DK Onverse Opposition of calculation values		

Fig. 3.170 U-shaped jacket: jacket shell

U-jacket	
Vessel shell Jacket shell Vessel head Head of jacket	
Head type	
Elliptic Hemispherical	. <u>S1</u>
O Torispherical	
Head material:	
Cr3 Properties Add	[↓] D [↓]
Head internal diameter, D: 1000 mm	
Head wall thickness, s1: 10 mm	
Corrosion allowance, c1: 2 mm	
Negative allowance, c2: 0,8 mm	
Technological allowance, c3: 0 mm	
Head height, H: 250 mm	
Bead length, h1: 20 mm	
Ring weld strength ratio, Fi: 1	
Calculation temperature, T: 20	
Insulation and lining >>	
	ОК Отмена Применить Справка

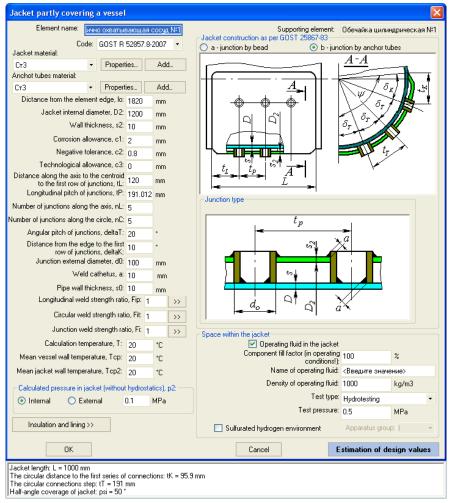


Fig. 3.172 U-shaped jacket: jacket head

3.17.46. Partial jacketing

Partial jacketing data are input similarly to those for cylindrical jackets.

Fig. 3.173 Partial jacketing

Jacket and shell joint type is determined according to GOST 34233.8-2017 (GOST 25867-83) (see Fig. 3.174).

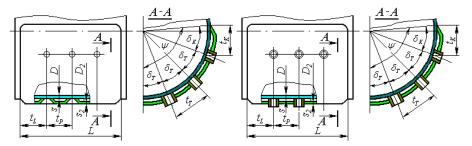
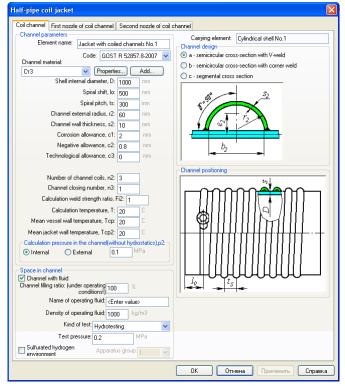



Fig. 3.174 Jacket and vessel body joint types

3.17.47. Half-pipe coil jacket

Spiral jacket data are input similarly to those for cylindrical jackets. During analysis, the coils can be treated as reinforcement of supporting shell by a system

of <u>stiffening rings</u>. Coil types are determined by GOST 34233.8-2017 (GOST 25867-83) (see Fig. 3.176). Nozzles are automatically placed at coil ends.

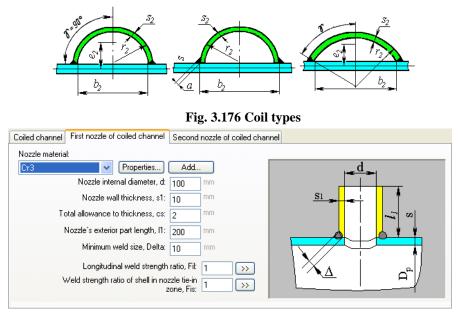


Fig. 3.177 Coil nozzle

3.17.48. Half-pipe battery jacket

Half-pipe coil jacket data are input similarly to those for spiral jacket. In accordance with GOST 34233.8-2017 (GOST 25867-83), this jacket is not considered as a system of <u>stiffening rings</u>.

Half-pipe battery jacket	
Battery channel First nozzle of battery jacket Second nozzle of	battery jacket
Channel parameters Element name: Half-pipe battery jacket No.1	Carrying element: Обечайка цилиндрическая №1 Channel design
Code: GOST R 52857.8-2007 🗸	a - semicircular cross-section with V-weld b - semicircular cross-section with corner weld
Cr3 Properties Add Shell internal diameter, D: 1000 mm Channel shift, lo: 0.2 m	C - segmental cross section
Channel pitch, ts: 300 mm Channel external radius, r2: 60 mm Channel wall thickness, s2: 10 mm	
Corrosion allowance, c1: 2 mm Negative allowance, c2: 0.8 mm Technological allowance, c3: 0 mm	
Number of channel coils, n2: 5 Calculation weld strength ratio, Fi2: 1 Calculation temperature, T: 20	Channel positioning
Mean vessel wall temperature, Tcp: 20 C Mean jacket wall temperature, Tcp2: 20 C Calculation pressure in the channel (without hydrostatics), p2: Internal O Internal D External 0.3	
Space in channel Space with fluid Space filling ratio (under operating 100 % conditions!):100 Name of operating fluid: <enter value=""></enter>	
Density of operating fluid: 1000 kg/m3	
Kind of test. No testing	
Sulfurated hydrogen Apparatus group:	
	ОК Отмена Применить Справка

Fig. 3.178 Half-pipe battery jacket

3.17.49. Jacket with longitudinal channels

Jacket with longitudinal channels can be connected to cylindrical shell or conical transition.

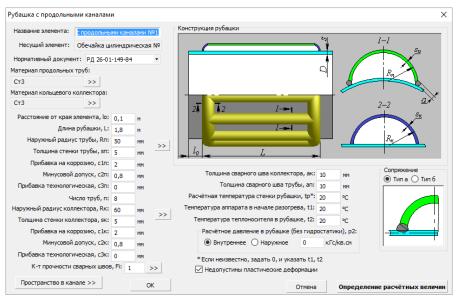


Fig. 3.179 Jacket with longitudinal channels

Parameters of channel cavity are specified by pressing "Space in channel" button, similar to 3.17.1.13.

Types of conjunction are set as per [51] and indicated in Fig. 3.180.

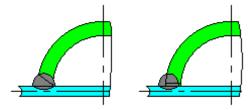


Fig. 3.180 Types of conjunctions

Parameters of pipes and collector (radius, thickness, negative allowance) can be selected from the grade using button >> .

If the wall calculation temperature tp, is unknown, it is necessary to specify "0" instead of it and set temperatures t_1 , t_2 .

Option **"Inadmissible plastic deformations"** is used in the presence of brittle coatings, possibility of corrosion cracking, etc.

3.17.50. Convex bulk

This component can be used in horizontal, vertical and column vessels for separation of volumes with different pressures and fillings. In the course of model building, it can be joined to the other components and inserted between them like a cylindrical shell, but during calculation it should be always placed between the other components. A separating wall creates a new volume, calculation of filling for which is performed separately. Filling parameters and propertied of the fluid inside this volume are also set in the dialog of separating wall. Daughter components, pressure in which is transferred depending on the separating wall orientation, can be joined to the separating wall.

Component name:	Ellipsoidal b	ulk No.				
c	Code: FOCT	P 52857	2-2007 -			¥
			per ND >>		-02	<u> </u>
ulk material:		nsions as	per ND >>		1	•
CT3	~~					
	e diameter, D:		mm		Ð	
Head wall t	hickness, s1:	10	mm	51		
Corrosion al	lowance, c1:	2	mm	1 ~ [*]		
	elerance, c2:		mm			
Technological al			mm	I ocation relative to the shells		
Head height, H: 250 mm			Between Inside	Invert the	side	
Straight flange length, h1: 0 mm						
Welder	d joint efficiend	sy, Fi: 1	>>	The space behind the wall Design pressure (without hydrostatics),	-2-	
Calculation ter	nperature, T:	20	°C	Internal C External	MPa	
Design pressure (with	out hydrostatic	:s), p:		linternal O External O	Mind	
Internal	External	0	MPa	Vessel with fluid		
				By vessel filling ratio		•
Insulation and lining >>	Head	ow-cycle	fatigue >>	Filling ratio:		%
Defects as per GOST	R 52857.11-2	007 >>	1	Name of operating fluid:		ание рабочей
				Density of operating fluid:	900	kg/m3
				Kind of test:	No testing	
				Sulfurated hydrogen environment		

Fig. 3.181 Ellipsoidal bulk

The head of the bulk can be elliptical, spherical or torispherical.

3.17.51. Virtual bulk

This component can be used in the same manner as <u>convex bulk</u>, but without strength and stability calculation of the separating wall itself (for instance, for modeling vessels with layer by layer filling with a heterogeneous medium, coke collectors, etc.).

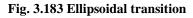

Virtual bulk	×
Component name: Virtual bulk No. 1 Design pressure (without hydrostatics), p:	
OK	Cancel

Fig. 3.182 Virtual bulk

3.17.52. Ellipsoidal transition

This component can be used in places of different diameters.

Ellipsoidal transition	×
Component name: Elipsoidal transition No.1	
Code: RD 24.200.08-90 Transition material: Cr3 Inside diameter in the beginning, Dn: 1000	
Inside diameter in the end, Dk: 500	mm z <u>D_H s</u>
Nominal thickness, se: 10 Corrosion allowance, c1: 2	mm V V
Negative tolerance, c2: 0.8	
Technological allowance, c3: 0	mm x
Straight flange length, h1: 0	mm Insulation and lining >>
The length of the thickened shell part, I0: 100	mm Defects as per GOST R 52857.11-2007 >>
The thickness of the thickened shell part, s11: 20	mm
The length of the thickened transition part, LO: 100	mm
The thickness of the thickened transition part, s10: 20	mm
Welded joint efficiency, Fi: 1	»
Calculation temperature, T: 20	°C
Design pressure (without hydrostatics), p:	
Internal O External 0	MPa
ОК	Cancel

3.17.53. Expansion bellows

This component behaves in the model similarly to <u>elbow</u>. Its calculation includes an assessment of strength and stability against pressure and displacements, including the calculation of low-cycle fatigue.

Expansion bellows	X
Component name: Expansion belows No.1 Code: ASME VIII div. 1, Mandatory Appendix 26 • Material: SA-240 -321 (PTB-4) Sheet >> Convolution height, w: 2 n Minimum inside dameter, Ob: 48 n Wall thickness, th: 0,048 n Corrosion allowance, ct: 0 n	Forming Expanding mandrel or roll forming Hydy, elastonerc, or preum. tube forming Formed from cylinders with an inside dameter of Db Formed from cylinders with an inside dameter of Db Amnealing Annealing Colar Colar Colar Hickness, tz 0 n N
Negative tolerance, c2: 0 n Convolution pitch, q: 1 n Number of convolutions, N: 12 Number of piles, n: 1 Segment length, me: 0,1 n Radus, rir: 0,25 n Radus, c0, 25 n	Belows colar length, Lc: 0 n Tangent colar longtudinal weld efficency, Cwc: 1 >> Cross-sectional area, Atc: 0 n ² Cold spring x0: 0 n y0: 0 n 00: 0 radar Calculated © Specified Axial stiffness, Kb: 0 bf/n
Kadus, IIC: 0,25 in	Stiffening ring material: Cr3 Welded pipe >>> Cross-section of one reinforcing fastener, Af: 0 n² Reinforcing fastener material: Cr3 Welded pipe >>> Cross-section of one reinforcing member, Ar: 0 n² Reinforcing member longitudinal weld efficiency, Cwr: 1 >>> Reinforcing member longitudinal weld efficiency, Cwr: 1 >>> Reference reinforcing fastener, Id: 0 n Reference reinforcing fastener, Id: 0 n OK Cancel Design values calculation

Fig. 3.184 Expansion bellows

Expansion bellows deformations can be calculated automatically, based on the fixing and loading conditions of the model. To do this, use the option "Displacements" – "Calculated".

The "Cold spring" option allows to specify a prestressed bellows.

For bellows operating as part of a shell (<u>shell-and-tube heat exchanger</u>), the "No calculation" option is available - it allows to specify a non-standard bellows with a known stiffness and take it into account in the calculation of the shell.

3.17.54. Structure

This component can be attached as a child component to the casing shell; its input data are set similarly to <u>column support structure</u>. Its calculation includes stiffness assessment and implementation of steel structure in the beam model as a super-element. The strength of the structure parts (beams) is not currently estimated.

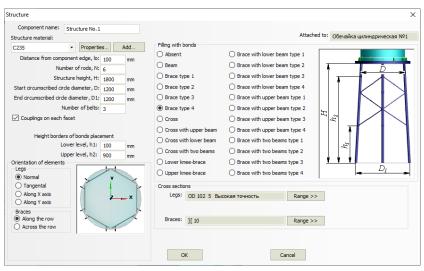
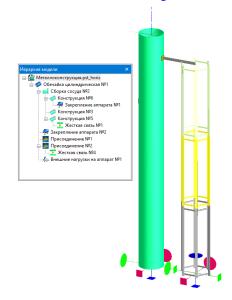



Fig. 3.185 Structure

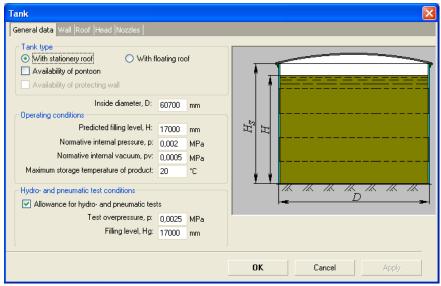

The steel structure shall be placed entirely within the boundaries of the parent shell. It can also be placed as part of an assembly. An assembly can contain a sequence of structures, in which case their beam models are linked automatically. End points of structures can have <u>links</u> and <u>fastenings</u>.

Fig. 3.186. Modeling a stand by structure

3.17.55. Vertical steel tank for oil and oil products

When selecting "Vertical tanks" (Fig. 3.6), an component "Tank" is created automatically in the model, and the dialog with its data opens.

Fig. 3.187 Tank general data

Currently a calculation of the tanks with stationary and floating roof is implemented. Calculation of tanks is available according to the following codes:

- STO-SA-03-002-2009 [54]
- GOST 31385-2016 [31]
- API 650-2020 [75]

Normative internal pressure and internal vacuum are set above the surface of the product (without without regard to hydrostatic pressure). When a checkbox "Pontoon presence" is selected, a weight of the pontoon being at the filling height, is considered (calculation of the pontoon itself is not provided yet).

Component "Tank" cannot be deleted from the model, but can be edited; besides, some daughter components can be connected to it. As the daughter components, the following can be taken:

- <u>Stiffening rings</u> (are connected to the wall);
- <u>Nozzles;</u>

• <u>Service platforms</u> (are connected to the wall);

<u>Lumped masses</u> (are connected to the wall and stationary roof, are divided into metal structures and equipment, are considered in different ways at calculation.

Tank <u>wall parameters</u> can be set by selecting <u>Next ></u> button.

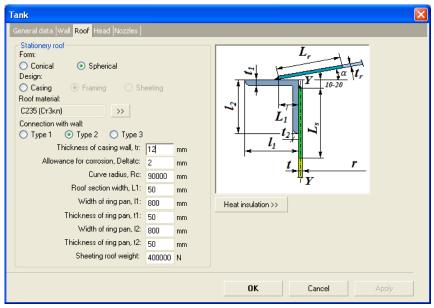
3.17.55.1 Tank wall

ank Gene		I Roof Head N	lozzles			×
	Belt height, h, mm	Nominal thickness, t, mm	Negative Allowance for tolerance, corrosion, Deltatm, Deltatc, mm	Material	Color	
1	2250	27	0,9 🛄 1	С235 (Ст3кп)	··· 🔲 💌	
2.⊁	2250	19	0,8 ⊡ 1	С235 (Ст3кп)	··· 🔜 💌	<
3	2250	16	0,8 ⊡ 1	С235 (Ст3кп) 🛛 🌔	··· 🔜 💌	
4	2250	16	0,8 ⊡ 1	С235 (Ст3кп) 🛛 🏾	··· 🔜 💌	
5	2250	14	0,8 ⊡ 1	С235 (Ст3кп) 🛛 🌔	··· 🔲 💌	
6	2250	14	0,8 ⊡ 1	С235 (Ст3кп) 🛛 🌔	··· 📃 💌	
7	2250	12	0,8 😶 1	С235 (Ст3кп)	··· 🗖 🔁	
8	2250	12	0,8 ⊡ 1	С235 (Ст3кп)	··· 🔲 💌	
		Nominal diame	ty, na: 24		d u a a a a a a a a a a a a a a a a a a	*1 D ₆
				OK	Cancel	Apply

Fig. 3.188 Tank wall

Height, thickness, negative allowance, corrosion allowance and material are set for each belt. Negative allowance and material can be selected by \bigcirc buttons, in accordance with [53].

If additional anchoring of the wall to the foundation is required, anchor bolts can be specified.


Thermal insulation parameters are set in accordance with clause 3.17.1.10.

When modeling a tank with a floating roof, it is necessary to specify the data of the upper wind ring (in addition to it, you can specify an arbitrary number of intermediate rings according to clause 3.17.18).

When calculating API-650, you can select the calculation method according to the code ("1 Foot Calculation Method" is simplified, "Variable Design Point" is more accurate).

Tank <u>roof parameters</u> can be set by selecting <u>Next</u> > button.

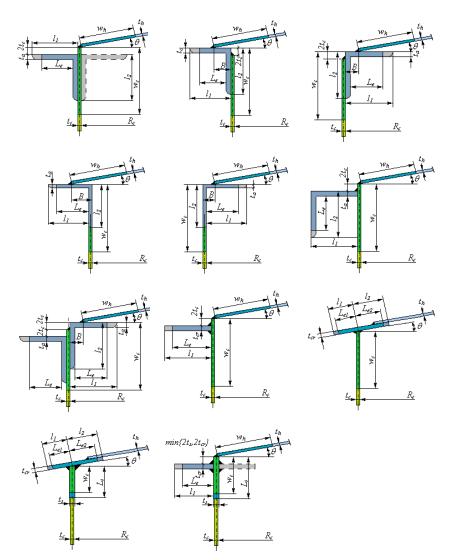

3.17.55.2 Tank roof

Fig. 3.189 Tank roof

Style, material and type of connection with wall are set.

When calculating according to API 650, the following options are available for joining the roof to the wall (Fig. 3.190):

The calculation of the supported roof strength and buckling is **not performed** in the current version of the program; only weight loads due to metal structures are taken into account. The weight of the frame roof can be specified in various ways:

• manually (weight value is specified);

- by the attached frame (it is necessary to prepare the frame model in a third-party CAD system similarly to the "Custom equipment" component, Fig. 3.191).
- by supported <u>roof designer tool</u>.

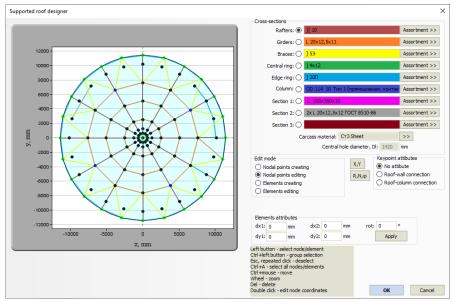


Fig. 3.191 Imported roof frame model

Tank <u>bottom parameters</u> can be set by selecting <u>Next ></u> button.

3.17.55.3 Supported roof designer

This tool allows to create a mesh of beam profiles. The created mesh is "stretched" onto the generatrix of the roof, the weight loads due to all beam elements of the frame are summed up. In addition, the tool allows to create a complex beam-shell finite element model of the tank and export it to an APDL file for strength and stability studies in the Ansys program.


Objects that the designer operates on:


- Nodes (nodal points) indicate the places where the frame elements are joined together and with the roof shell. The nodal points split the roof shell into 4- nodal finite elements;
- Connecting nodes (nodes with the attribute "Roof-wall connection"). This nodal point is involved in the modeling of the wall (from the circular sequence of such nodes, shell 4-nodal elements of the wall are "grown" down to the foundation). It is desirable to arrange the connecting nodes evenly and assign their coordinates as accurately as possible along the circumference of

the wall. An error in the value of the connecting nodes can lead to a significant distortion of the solution;

- Support nodes (nodes with the "Roof-column connection" attribute). In this case, a beam element is "grown" from the nodal point to the foundation, modeling a column of a given section;
- Free nodes nodes where beam elements do not join. Such nodes are used to control the mesh (the roof shell is divided into shell elements using all specified nodes);
- Element section of a beam, connecting two arbitrary nodes with given cross-section;
- Section profile of the element, which can be selected from the database. The sections are named ("Rafters", "Beams", etc.), but this naming is conditional and does not necessarily reflect the functionality of the element. The exception is the "Column" section support nodes always generate a vertical element of just such a section.

When opening the designer, a circular selection is displayed in the Cartesian axes, corresponding to the diameter of the roof in the plan, as well as the area of the central hole (if the "Skylight" option was activated).

The sequence of creating a frame plan:

- 1) Create nodal points ("Nodal points creating" mode) for example, by Cartesian coordinates (X, Y), in the form of a circular array (R, N, ϕ) or by clicking the left mouse button (not recommended, but acceptable, in this case, the coordinates of the node will be taken approximately);
- Connect nodal points with beam elements ("Elements creating" mode) – when two nodes are sequentially selected, they are connected by an element of the selected section;
- 3) Assign attributes to the nodes of support and connecting;
- 4) Assign profile sections.

Nodes can be edited at any time (including after the creation of elements) - in this case, the element grid is not destroyed. For this, the "Nodal points editing" mode is provided.

Node attributes can also be changed at any time (group editing is available by selecting with the Ctrl key).

The section of an element can be changed using the "Elements editing" mode (group editing is available).

Element attributes are used to fine-tune the parameters of a beam element (dx, dy - displacement of the cross section at the end point,*rot*- rotation of the section by a given angle).

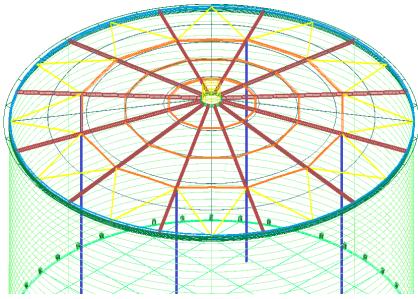


Fig. 3.193. Roof frame model

Based on this information, the program automatically generates a finite element model. The roof shell and wall belts are divided into 4-nodal shell elements, the frame and stiffening elements (rings, columns) are represented by beam elements. Shell elements in the center hole (Dl) area are not created. The model can be loaded and exported to an APDL file (see section 3.19.1 for details).

3.17.55.4 Tank bottom

Tank	
General data Wall Roof <mark>Head</mark> Nozzles	
Head Material of edges: Thickness of ring edges, tb: 20 mm Allowance for corrosion of edges, Deltatcb: 1 mm Negative allowance for edges, Deltatmb: 0,9 mm Width of edge inner part, Lb: 900 mm Plastic deformations in the edge sheet are allowed Material of center: C235 (CT3kn) >> Thickness of center, tbc: 10 mm	t d t d
	OK Cancel Apply

Fig. 3.194 Tank bottom

Information on the nozzles in the wall and stationary roof is entered by selecting \bigvee button.

3.17.55.5 Tank nozzles

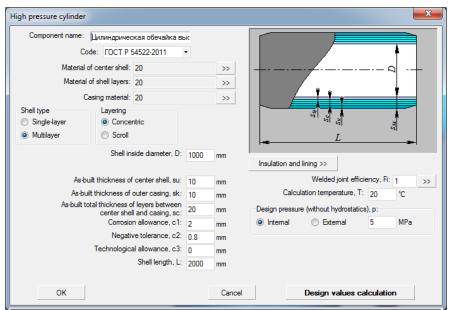
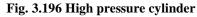

	1	2	3	
Name	Люк-лаз	Патрубок для зачистки	Патрубок приемо-раз,	Патрубс
Drawing mark	Π4	□3	□2	
Inside diameter, mm	606	147	257	
Wall thickness, mm	12	6	8	
Туре	Set-in with reinforcir 🗸	Set-in with reinforcir 🗸	Set-in with reinforcir 🗸	Set-in w
Positioning angle, "	90	30	180	
Displacement from edge, mm	750	300	390	
Outside part length, mm	350	200	250	
Inside part length, mm	200	125	150	
Reinforcement thickness, mm	6	6	6	
Reinforcement width, mm	315	79,5	136,5	
Add Edit			Delete sele	ected
Roof nozzles				
	1			
	Люк световой			
Name	ЈІЮК СВЕТОВОИ			
	Люк световои			
Drawing mark				_
Drawing mark Inside diameter, mm	П6			
Drawing mark Inside diameter, mm Wall thickness, mm	П6 506			-
Drawing mark Inside diameter, mm Wall thickness, mm Type	П6 506 12			-
Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, "	☐6 506 12 Set-in with reinforcir ❤			-
Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm	∏6 506 12 Set-in with reinforcir ∽ 0			
Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm Outside part length, mm	☐6 506 12 Set-in with reinforcir ✓ 0 350			
Name Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, * Displacement from edge, mm Outside part length, mm Reinforcement thickness, mm	☐6 506 12 Set-in with reinforcir ▼ 0 350 350			
Drawing mark Inside diameter, mm Wall thickness, mm Type Positioning angle, " Displacement from edge, mm Outside part length, mm Inside part length, mm	☐6 506 12 Set-in with reinforcir ♥ 0 350 350 200			

Fig. 3.195 Tank nozzles

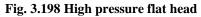

For each list of nozzles the following operations are available:

- Adding of nozzle to the wall/roof ("Add"). If some of already created nozzles is highlighted in the list, then data of a newly created nozzle is copied from the selected one; Nozzle data editing window is opened automatically; some data can be corrected right in the list;
- Nozzle editing (command "Edit");
- Deleting nozzles one by one or group; all selected nozzles are deleted.

Then all added nozzles can be edited and deleted as ordinary components of the model.

3.17.56. High pressure cylinder

Component name, code, material, geometry and weld strength ratios are assigned equally to cylindrical shell (i. 3.17.2). Both a single-layer and a multilayer shell can be assigned. At that, for multilayer shell you should select a type of layers positioning (concentric or scroll).


Code: FOCT P 54522-2011 Head material: Cr3 >> Head inside diameter, D: 1000 mm Head wall hickness, s1: 40 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, Fi: 1 >> Calculation temperature, T: 200 °C Design pressure (wthout hydrostatics), p:				ще высокої 2011 -	
Head inside diameter, D: 1000 mm Head wall thickness, s1: 40 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, Fi: 1 >> Calculation temperature, T: 200 °C		. TOCTI	J4J22-2	.vii ·	
Head inside diameter. D: 1000 mm Head wall thickness, s1: 40 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, Fi: 1 >> Calculation temperature, T: 200 °C	Ст3	>>			51
Head wall thickness, s1: 40 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, Fi: 1 >> Calculation temperature, T: 200 °C	Head inside dia	ameter, D:	1000	mm	
Negative tolerance, c2: 0.8 mm Technological allowance, c3: 0 mm Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, R: 1 >> Calculation temperature, T: 200 °C	Head wall thick	kness, s1:	40	mm	
Technological allowance, c3: 0 mm Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, R: 1 >> Calculation temperature, T: 200 °C	Corrosion allow	ance, c1:	2	mm	
Head height, H: 250 mm Straight flange length, h1: 300 mm Weld strength factor, R: 1 >> Calculation temperature, T: 200 °C	Negative toler	ance, c2:	0.8	mm	
Straight flange length, h1: 300 mm Insulation and lining >> Weld strength factor, Fi: 1 >> Calculation temperature, T: 200 °C	Technological allow	ance, c3:	0	mm	
Weld strength factor, FI: 1 >> Calculation temperature, TI: 200 °C	Head	height, H:	250	mm	
Calculation temperature, T: 200 °C	Straight flange l	ength, h1:	300	mm	Insulation and lining >>
Calculation temperature, 1. 200	Weld st	rength fact	or, Fi: 1	>>	
				°C	
Internal ○ External 5 MPa	Internal	temal	5	MPa	

3.17.57. Ellipsoidal high pressure head

Fig. 3.197 Ellipsoidal high pressure head

3.17.58. High pressure flat head

Flat high pressure head	
Component name: днище высокого давления №1 Code: ГОСТ Р 54522-2011 • Head material:	Construction of heads and covers With conical transition With radius transition Grooved
Cr3 >> Inside dameter of adjacent component, D: Cylindrical part thickness, s: 40 mm Head wall thickness, s: 1110 mm Corrosion allowance, c1: 2 mm Negative tolerance, c2: 0 mm Technological allowance, c3: 0 mm	
Fillet radius, r: 28 mm	Insulation and lining >>
Min. thickness in a groove area, s2: 80 mm Groove inside diameter, D1: 400 mm Calculation temperature, T: 20 °C	
Design pressure (without hydrostatics), p: Image: Internal Image: Ima	
ОК	Cancel Design values calculation

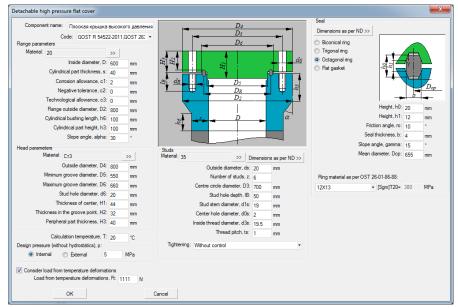
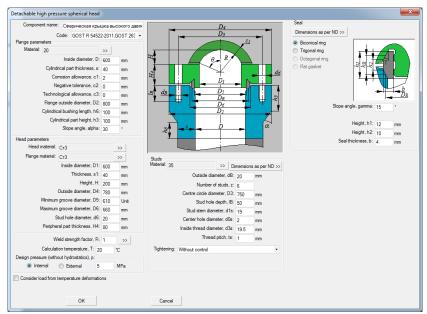
It is possible to assign three types of high-pressure flat heads construction: with conical and radial transition, as well as with groove.

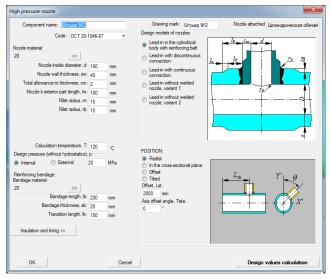
Spherical unbea	ided high press	ure head			X
Component	пате: Сферич	еское дни	ще высо	кого	
	Code: FO	CT P 54522	2-2011	-	
Head material:					
Ст3	>>				
	Inside diameter o	of adjacent ponent, D:	1000	mm	R O
Wall thicknes	Wall thickness of adjacent component, s:			mm	
	Head	height, H:	500	mm	EL A
	Head wall thic	kness, s1:	40	mm	
	Corrosion allov	vance, c1:	2	mm	
	Negative tole	rance, c2:	0.8	mm	Insulation and lining >>
Т	echnological allov	vance, c3:	0	mm	
	Welded joint effi	ciency, Fi:	1	>>	
	Calculation temp	erature, T:	20	°C	
Design pressur	e (without hydrost	tatics), p:			
Internal	External	5	MPa		
	ОК		Cance	el	Design values calculation

3.17.59. Spherical unbeaded high pressure head

Fig. 3.199 Spherical unbeaded high pressure head

3.17.60. Bolted high pressure flat head


Fig. 3.200 Bolted high pressure flat head

3.17.61. Bolted high pressure spherical head

Fig. 3.201 Bolted high pressure spherical head

3.17.62. High pressure nozzle

Fig. 3.202 High pressure nozzle

3.17.63. High pressure flange joint

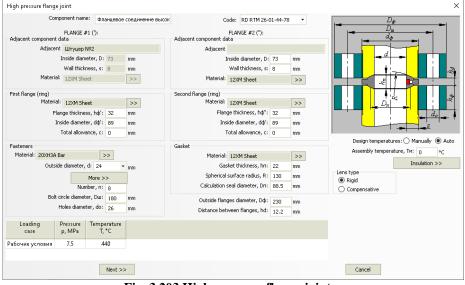
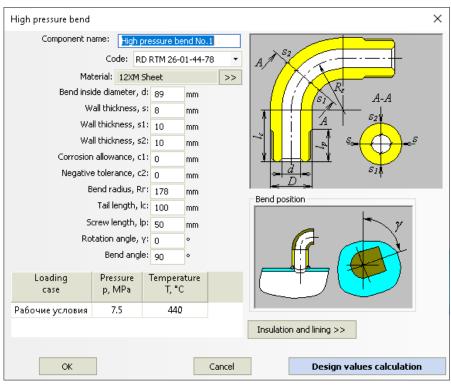
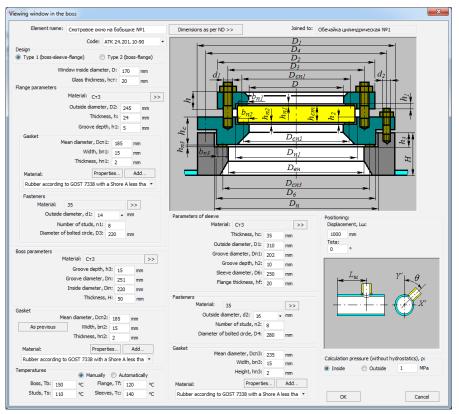



Fig. 3.203 High pressure flange joint


This component can be attached to a high pressure shell or high pressure nozzle.

3.17.64. High pressure bend

This component is used to simulate the piping of the high pressure vessels.

3.17.65. Viewing window in the boss

Fig. 3.205 Viewing window in the boss

This component can be joined to cylindrical shell or elliptic head. Possible variants of structure:

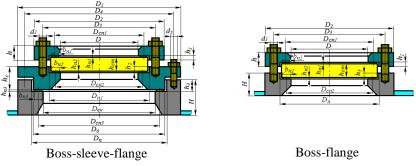


Fig. 3.206 Viewing window types

Gasket properties, temperatures and fasteners parameters setting is performed similarly to the flange connection (only soft gaskets can be used).

Window position on the bearing component is defined similarly to the nozzle.

Button Dimensions as per ND >> ("Sizes as per codes") enables selection of standard variants of component from database.

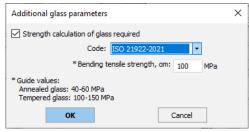
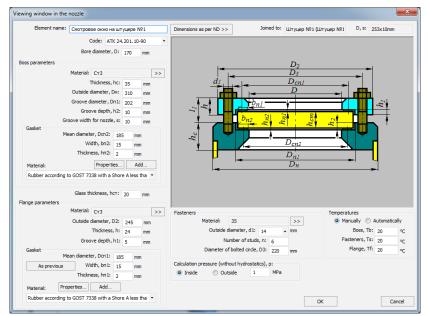



Fig. 3.207 Additional glass parameters

Using the button > it is possible to set additional glass parameters for strength calculation (Fig. 3.207).

3.17.66. Viewing window in the nozzle

This component acts in the structure similar to the head.Defining of properties is performed similar to the window on the weldolet.

3.17.67. Flange boss

Flange boss	•	1	- 6	×
Element name: Φ_J	анцева	ая бобышка І	Vº1	Type
Joined to: Of	бечайка	а цилиндриче	еская №1	Type A (welded)
Co	de: O	CT 26-01-748	-73 •	$\frac{d}{d}$ D_2
	D	imensions as	per ND >>	
Boss parameters				
Material: C	т3		>>	
Inside di	ameter,	d1: 78	mm	
Outside d	liameter	r, D: 195	mm	
	nickness		mm	\square
Corrosion allo	owance	, c1: 0	mm	
Negative allo		· · · ·	mm	Use 1 (male) O Use 3 (groove)
Technological allo	wance,	, c3: 0	mm	O Use 2 (female) O Use 4 (oval)
Male dia	ameter,	D2: 138	mm	Destification
Ma	le heigh	it, f: 3	mm	Positioning: Displacement, Lw:
Female dia	ameter,	D3: 121	mm	1000 mm
Female (groove) depth	, f1: 3	mm	Teta:
Groove inside dia	ameter,	D4: 105	mm	0 °
Fasteners				
Outside diame			mm	$+ \cdot - \cdot + \cdot + + \cdot + X'$
Number Diameter of bolte				
	a arae, ng depti		mm	
	ad dept		mm	
			mm	
Calculation temp	erature	, T: 200	°C	
Calculation pressure (withuo				
Inside Outs	side	1,6	MPa	
OK				Cancel

Fig. 3.209 Flange boss

This component can be joined to cylindrical shell or elliptic head. Possible variants of structure:

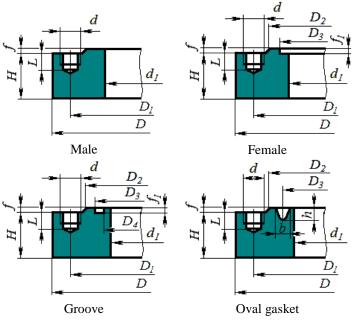


Fig. 3.210 Flange boss types

3.17.68. Vessel assembly

This component provides creating of a model that has two or more vessels. (Fig. 3.211).

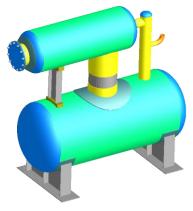


Fig. 3.211 Two-level vessel

This assembly is a coordinate system tied to some component, shifted and rotated relative to the source coordinate system (model CS or parent component CS).

Vessel assembly				×
Component name:	Vessel as	sembly No	o.1	
Joined to:	Cylindrica	al shell No	.1	
Assembly origin				
Relatively to mode	CS			
O Relatively to CS at	the parent	start		$\varphi_Y = -90^{\circ}$
O Relatively to CS at	the parent	end		
X0: 0 Y0: 0	Z0:	0	mm	
Turns ar	ound own a	ixes:		
FiX: 0 FiY: 0	FiZ:	0	•	Zo
	ОК			Cancel

Fig. 3.212 Vessel assembly

New coordinate system is shifted relative to the old one at X_0 , Y_0 , Z_0 , and then is rotated around its own axis X, Y, Z consequently to ϕ_X , ϕ_Y and ϕ_Z . Child components of the vessel, rotated in a specified manner, are joined to the assembly. To close the structure of the unit, the assembly shall be used together with the <u>Rigid link</u> component.

3.17.69. Rigid link

The component allows the two endpoints of the device to be rigidly connected at the level of a beam finite element model, by visually forming a rectilinear area of the given section.

Rigid link								×
Component name:	Rigid lir	nk No.1						
Joined to:	Cylindr	ical shell No	.1					
Connected component:					-			- Mar
Construction material:	Ст3 W	elded pipe	>>					
Construction section:				Asso	rtment >>			
S	ection ro	tation angle	ε, ω:	•				
	Design I	temperature	e, T: 20	°C				
Stiffness calculation	Stiff	ness values				,		
 Absolute 	Kx:	10000	kN/mm	M×:	174532.925	kN∙m/°		
O By cross section	Ky:	10000	kN/mm	My:	174532.925	kN⁺m/°		
Manually	Kz:	10000	kN/mm	Mz:	174532.925	kN∙m/°	ОК	Cancel

Fig. 3.213 Rigid link

The component is attached to the end of the shell or <u>nozzle</u>, or to the joining <u>pad</u>, or to the <u>saddle support</u>.

The other end area shall be selected from the list of available related components.

The weight of the material for this component is taken into account for a given section and is applied as a distributed weight load. The link is visually displayed with the specified section (if specified), and its stiffness is set by the "Stiffness calculation" option:

• Absolute - an absolutely rigid link is formed;

• By cross section - stiffness parameters are calculated for a beam element of a given section and length;

• Manually - the stiffness components must be entered.

3.17.70. Custom equipment

This component allows you to add arbitrary equipment created in a third-party CAD system to the model. These can be internal technological components, metal structures, external units, etc. The equipment will be visualized in the context of the model, as well as taken into account in the formation of the materials table and in the calculation of loads as a lumped mass rigidly connected to the selected parent component.

Custom equip	ment							\times
Model file:	C:\Users\Model_4.igs							
Atta	ached to:	Обечайк	а цилиндри	ческая №1		φz		
Compone	nt name:	User equi	ipment Nº1		1	CIG		
Assembly or	gin							
Relatively	/ to world	CS					A .	
Relatively	/ to CS at	the parent	start			<u>a</u> 177		
O Relatively	/ to CS at	the parent	end				Φχ	
X0: 0	Y0: 0	Z0:	0 mr	n				
	Turns ar	ound own a	axes					
φ×: 0	φy: 90	φz:	0 °					
	Sc	ale factor:	0.001					
Loading due to		-						
By material								
O By volume								
 By volume 	of bodies (and specific	ed material					
 By specifie 	d mass of	equipment						
		Equipmen	t mass: 0	kg	🗹 Presents unde	r mounting condi	ition	
					Component type:	Structure		•
ОК				Cancel		Design valu	ies calculatio	ı

Fig. 3.214 Custom equipment

To load the equipment, it is necessary to prepare a file with its model in one of the popular <u>data exchange formats</u> and specify it in the "Model file" line. After loading, the assembly elements are stored in the vessel model (synchronization with the source file is not supported).

The options "Assembly origin", "Turns around own axes" allow placing equipment at an arbitrary point of the model. The Scale factor option allows you to control the scaling of the custom model if the third-party CAD units are different from those used in the program.

The "Equipment weight load" option allows you to set the method by which the weight load will be calculated:

• "By material attributes in the model file" - if the assembly parts have a material density attribute set, the volume of each part is multiplied by the density;

- "By volume of bodies and specified density" the value of the material density is set by user, the volume of each part is multiplied by the density;
- "By volume of bodies and specified material" the material of equipment elements and its density is selected by user from the database, the volume of each part is multiplied by the density;
- "By specified mass of equipment" the weight of equipment is set by user manually.

The "Component type" option (Equipment/Structure) is required for compatibility with the "Passat-Tanks" module:

- Loads from the weight of equipment and metal structures are calculated in different ways;
- Structures attached to the carcass roof are identified as carcass element.

3.17.71. Non-circular component

This component is intended for modeling and analysis of rectangular and oval structures.

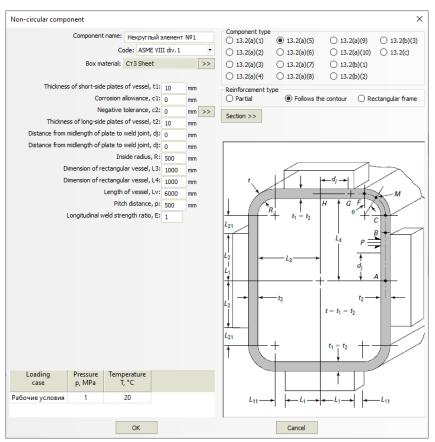


Fig. 3.215 Non-circular component

Available configurations of the component are determined by the code (Fig. 3.216).

Some configurations of the component can be reinforced with stiffeners (set by the "Section" button similar to the <u>stiffening rings</u> of cylindrical shells).

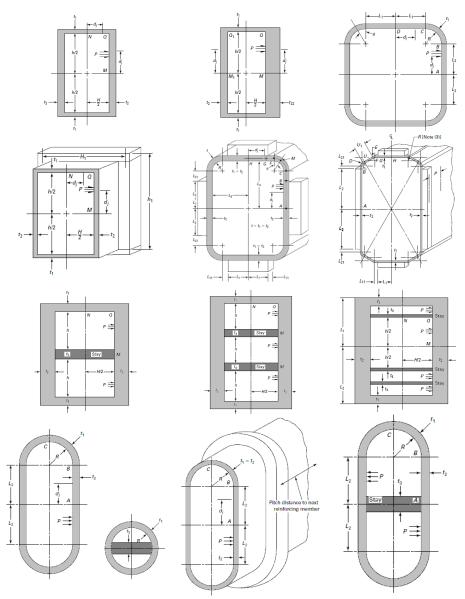


Fig. 3.216 Non-circular component as per ASME VIII-1

Currently, this component cannot be parent or adjacent to other design components.

3.18. Editing and deleting input data

After the model is created, its components can be edited or deleted, their colors can be changed, and existing components can be copied as new ones.

Select the desired component to edit or delete an component. If there are several components in one spot, select the desired component and choose the operation you wish to perform.

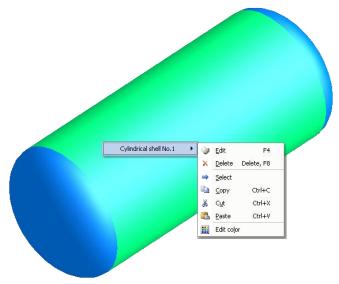


Fig. 3.217 Editing and deleting input data

Select whether to edit or delete the component. If component dimensions or load properties are changed, adjoining components of the whole model will also be changed (after a warning message is displayed).

Confirmation will be requested before deleting an component. In addition, if selected component includes daughter components (supports, nozzles, flanges, etc.), a warning message will be displayed before their deletion.

Components can also be edited or deleted by pressing "F4" or "F8", respectively, and choosing the desired component from a table.

Select an component to edit:	
All components]
Cylindrical shell №1 Ellipsoidal head №1 Ellipsoidal head №2	Edit
	Exit

Fig. 3.218 Selection of the component

A component can be selected using the mouse cursor or the "Select" (icon) command of the pop-up menu (selected component will be highlighted). Selected component can be edited by double-clicking it or pressing "F4" and deleted by pressing "Delete" or "F8". It can also be copied and then pasted. When pasting, the copied component will be adjoining to the selected one (if any). If no component is selected when pasting, a dialog with the list of possible adjoining components will appear.

3.18.1. Group data editing

If necessary to change some parameters (design temperatures, corrosion allowances) of several components within the model immediately, it can be conveniently done using icon **1** "Group data editing".

Data type: Tem	perature			
Component	Parameter	Value	Replace	
psoidal head #1				_
абочие условия	Design temperature, T, "C	200		
zzle #1 (Nozzle #1)				
абочие условия	Design temperature, T, "C	200		
e flange #2				
	Design temperature of flange (ring) 1, Tf1, *(200		
	Design temperature of flange (ring) 2, Tf2, *(200		
	Temperature of bolts/studs, Tb, *C	200	\checkmark	
lindrical shell				
абочие условия	Design temperature, T, "C	200	\checkmark	
ddle support #2	Design temperature, T, "C	20		
ddle support #1	Design temperature, T, "C	20		•
zzle #2 (Nozzle #2)				
абочие условия	Design temperature, T, "C	200	\checkmark	
e flange #1				
				>
Select all Reset selection Loading	case: Рабочие условия • Select Ne	w value: 250	°⊂ Re	place

Fig. 3.219 Group data editing

In this window you can directly edit the available data cells, and also check a group of cells (buttons "Select all" and "Deselect" select/clear all the checks in the list). Then you can input a new value below and press "Replace" button. In the example at Fig. 3.219, all temperatures in the model, except for saddles supports ones, will be replaced from 200°C to 250°C.

3.18.2. Insulation setting by list

Insulation list" tool provides setting and changing of thermal insulation parameters of several model components.

Component	Presence	Name	Thickness	Density	Test conditions	Assembly co	Replace
vlindrical shell No.2		Insulation	15	150			
ange joint No.1		Insulation	0	0			
lindrical shell No.1	\checkmark	Insulation	10	150	\checkmark	\checkmark	
lipsoidal head No.1	\checkmark	Insulation	10	150	\checkmark	\checkmark	
		Insulation thickne Insulation densit	ty, ro(i): 154 conditions	mm kg/m3			
		Presents under mou	nting conditions				

Fig. 3.220 Insulation setting by list

In the open window, you can directly edit the available cells, as well as check a group of cells (buttons "Select all" and "Deselect" select/clear all the checkmarks in the list). After that, you can enter the insulation sample parameters and click the "Replace" button. In the example shown in Fig. 3.220. after clicking the "Replace" button, thermal insulation on all components will be changed from mineral wool boards to fiberglass mats.

3.19. Data export and import

There are several import/export options in PASS/EQUIP. This is done by saving files in different formats. The following import/export options are currently available:

Format	Description
Export to XML Import from XML	Import/export to XML format. XML format data contain an object model and are sufficient for setting/retrieving all model properties required for vessel strength analyses. For more details, see Attachment "Passat XML"

X	Import from MechaniCS XML				
Export to Nozzle- FEM		When exporting to the "Nozzle FEM" program, the model is saved completely in XML format, while the target element is marked with a special tag, which allows the "Nozzle FEM" program to correctly interpret it. You must specify the folder where the exported files will be placed. The file names are the same as the components names. You must specify which of the components should be exported, or select an individual component using the context menu of the right mouse button (this can be a nozzle, a conical reducer, etc.).			
P	Export of other file type to PASS/EQUIP file	When saving, a file type can be changed: i.e. a vertical model or column can be saved as horizontal model for calculations of tests in the horizontal position on the saddle supports.Not all of components can be saved in the new type of model, and appropriate notification will be displayed.			
4	Export to IGES Export to STEP Export to ACIS Export to Parasolid Export to JT Export to VRML Export to STL	Creates the selected file format, containing geometric parameters of the vessel solid model and the attributes of object colors. In case simplified redesign mode is of switched on, the model will be additionally redesigned in precise mode, which may take more time. Obtained files can be opened and used for creation drawings of views and sections of the vessel in the popular 3D design and analysis systems (SolidWorks, Kompas-3D, ANSYS, etc.).			
Λ	Export to Ansys (APDL)	The command is available for a vertical tank model (Passat-Tanks module). A finite element model of the structure is created, to which loads are applied based on the selected code (STO-SA-03-002, GOST 31385, API 650). The model is exported to an APDL batch file, which can be opened in Ansys to estimate the strength and buckling of the structure under a given loading mode. For details, see clause 3.19.1			

When running a program with command line parameters **passat.exe** File_Name /savexml, the program saves an opened file in XML format in silent mode and ends.

3.19.1. Export of a tank model to Ansys

After creating a tank model, it can be exported to an Ansys batch file (APDL format) with constraints and applied loads, according to the selected code (Fig. 3.221, Fig. 3.222).

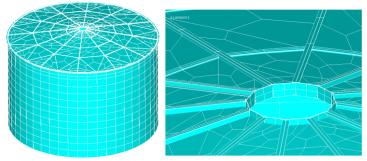


Fig. 3.221 Elements of the exported model

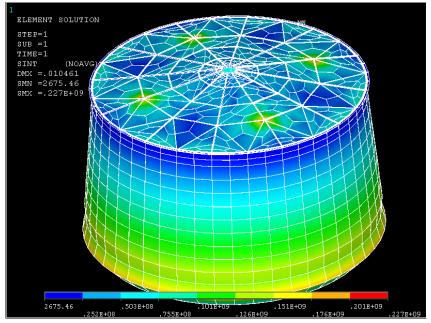


Fig. 3.222 Ansys exported model solution example (hydrostatic pressure loading, deformed view, stress intensity)

3.19.1.1 Model loading as per STO-SA-02-003, GOST 31385-2016

When selecting the option "Tank loading according to STO-SA-02-003, GOST 31385-2016" in the general data, the model is loaded according to the settings Fig. 3.223.

Coading condition ○ Operating ● Empty tank b	uckling	
Snow loading	Non-uniform	
Wind loading Apply 	O No	
ОК	Ca	ncel

Fig. 3.223 Model loading as per STO-SA-02-003, GOST 31385-2016

Option	Description	Note
Wind loads	Wind loads, if specified, are applied to the roof (wind uplift as a constant internal pressure $0.9 \cdot p_w \cdot C_{e2}$ as per [35]) and to the wall (variable pressure diagram in height and in plan $0.9 \cdot k \cdot p_w \cdot C_{e1}$ as per [35])	

Snow loads: uniform	The weight load due to snow is applied vertically downwards, taking into account the inclination of the normal to the roof surface: $p_s=0.9 \cdot p_{s0}$	ρs Ηα ρs·cosα
Snow loads: non-uniform	The weight load due to snow is applied vertically downwards, taking into account the inclination of the normal to the roof surface, as well as the unevenness factor as per [54]: $p_s=0.9 \cdot \mu \cdot p_{s0}$	p_s $p_s cos \alpha$ $\mu(z,\beta)=0$ z $\mu(z,\beta)=0$
Operating	Loading with weight loads, internal vapor pressure and static head of the product: $p=p \cdot g \cdot (H-x)+1.2 \cdot p_i$ Wind loads are applied automatically (if any). The weight of the metal is taken in the corroded state. The weight of the attached metal structures and equipment is applied with a coefficient of 0.95. The equipment and metal structures on the wall are applied as a weight load distributed along the circumference.	

Empty buckling	External pressure on the wall: $p=0.95 \cdot 1.2 \cdot p_v$	
	External pressure on the roof: $p=0.95 \cdot 1.2 \cdot p_v + 0.95 \cdot (1.05 \cdot G_{r0}+1.3 \cdot G_{r1})/(\pi \cdot r^2)$, where G_{rt} – roof insulation weight, G_{r0} – roof equipment weight. Snow and wind loads are applied optionally.	

3.19.1.2 Model loading as per API-650

When selecting the option "Tank loading according to API-650" in the general data, the model is loaded according to the settings Fig. 3.224. The minimum design load on the roof $L_r=1.0$ kPa is considered as a constant vertical load in the plan, it is applied to the roof elements taking into account the direction of the normal to the surface at the considered point ($L_r \cdot \cos \alpha$).

Uniform snow load $S_b=0.84$ ·S, non-uniform snow load depends on roof slope: $S_u=\{S_b \text{ when } \theta \le 10^\circ; 1.5$ ·S_b when $\theta > 10^\circ\}$, is distributed over the roof sector 135° in the plan.

The design wind pressure on the shell $P_{WS}=0.89 \cdot (V/190)^2$, is applied as a horizontal load from the windward side, taking into account the direction of the normal: $F_x=P_{WS} \cdot A_1 \cdot \cos \alpha$, where A_1 is the area of the considered wall element.

The design wind uplift pressure on the roof is $P_{WR}=1.48 \cdot (V/190)^2$ applied as internal pressure to the roof elements (normal to the surface at the considered point).

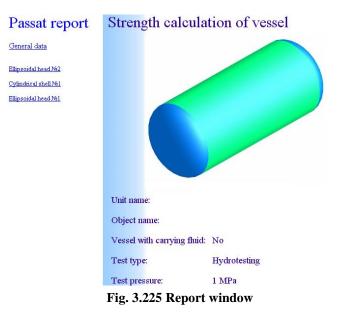

Model loading as per API-650	×
Loading condition Static head and internal pressure (strength): DL + F + Pi) Wind and internal pressure (strength): DL + W + 0.4 · Pi Wind and exrnal pressure (strength and buckling): DL + W + 0.4 · Pe Gravity load (strength and buckling) DL + max{Lr; Sb} + 0.4 · Pe DL + Su + 0.4 · Pe DL + Pe + 0.4 · max{Lr; Sb} DL + Pe + 0.4 · Su	
DL - dead load F - static head Pi - internal pressure Pe - external pressure (vacuum) W - wind load Lr - minimum roof live load 1 kPa Sb - balanced design snow load (0 if absend) Su - unbalanced design snow load (applied over a 135° sector, 0 if absend) Su - Lancel	

Fig. 3.224 Model loading as per API-650

3.20. Vessel components analysis and output of results

When model creation and input of load and material properties is complete, press "Vessel analysis F3" (or **button**) to run the analysis.

If vessel component dimensions and placement meet the analysis requirements, a detailed report containing strength analysis results and operability conclusions for each individual component will be displayed.

3.21. Output in RTF format

Analysis output including intermediate and final results can be saved in RTF format. Output in RTF format is convenient in that its format can be set manually by using a template and that it can be edited in a word processor, such as Microsoft Word.

To export to RTF format, use the the button (Ctrl+W). Output options can be set in the dialog window that will open (Fig. 3.226).

Creation of r	reporta
Components	General Title Block filling
	Check components, which course of calculation is to be incuded in the report:
	idal head Nº2
	rical shell Nº1
Ellipsoid	idal head Nº1
Selec	ct all Deselect
ł	Kind of the report: Full report, based on ESKD
	Template: Z:\Passat Многоязычный\Reports Templates\Eng\eskd.r Select template
	Save Report as: Et/passat/Examples/Passat - horizontal1.rtf Select file
	♥ Open report in MS Word
	Create Report Cancel

Fig. 3.226 Output in RTF format

Output options:

Output type	<i>Full report, based on ESKD</i> (Russian unified design documentation system) –contains input data and intermediate and final analysis results, including borders and title blocks in accordance with ESKD. <i>Brief report, based on ESKD</i> –contains input data and final analysis results, including bounds and title blocks in accordance with ESKD. It includes only criteria on which it is concluded about the vessel operability, and the values that they contain. <i>Full report in free format</i> –contains input data and intermediate and final analysis results. Output format is similar to the HTML format displayed at the end of analysis. <i>Based on user template</i> – output format is defined by			
Template	Allows selection of the template to be used for output.			
Save report as	Allows input of the file name under which output should be saved.			
Open output in MS Word	If selected, after output file is created, it will automatically be opened in MS Word (MS Word 2000			

	or higher must be installed).		
Create output	Generate output file.		
Cancel	Close window without creating output file		
"Elements" tab (Fig. 3.227)	Allow selection of model components to be included in output.		
"General" tab (Fig. 3.227)	Allows input of vessel and plant names, analysis number and other values that can be included in the output. See 3.21.1.		
"Title Block" tab	Allows input of information to be included in the Title Block of reports based on ESKD (or a custom format using a similar template)		

Creation of report									
Components General Ti	tle Block filling								
Object name	1	Creation of report X Components General Title Block filling							
Unit name	Дефлегматор поз.902/1						_	_	
Calculation number	<enter calculation="" number=""></enter>			Signature	Date				
Order number	<enter number="" order=""></enter>	Designer	<enter name=""></enter>				Liter	Sheet	Sheets
Order name	<enter name="" order=""></enter>	Supervisor	<enter name=""></enter>						
		Estimator	<enter name=""></enter>					irganizatio r organiza	
Organization	<enter name="" organization=""></enter>	Inspector	<enter name=""></enter>			Strength		-	
City	<enter city=""></enter>	Confirm.	<enter name=""></enter>			calculation			

Fig. 3.227 Title block

3.21.1. Template creation

An output template must be in RTF format and can be created using any word processor supporting this format – for example, Microsoft Word. The template can include any components and formatting, which will be included the output. To insert appropriate data into the output, variables used by PASS/EQUIP must be included in the template. These variables will be substituted with actual values during output generation. A hatch sign (#) must be placed before a variable in the template. Two consecutive variables must be separated by a space. If a hatch sign not intended for variable definition must be placed, two consecutive hatch signs should be used (##).

Output of variables can be modified using parameters. Parameters are written inside the variable string, separated from the variable name by a colon and from each other by a comma. Parameters can have values, indicated by an equal sign.

```
#VARIABLE_NAME:PARAMETER[=VALUE],PARAMETER[=VALUE]...#
```

3.21.2. Use of variables

The following	variables are	currently	available	for use in	templates:

Variable name	Description	Place of value		
#OBJECT#		"General" tab		
#PLANT#	object name name of plant	"General" tab		
#PLANT# #NCALC#				
	analysis number	"General" tab		
#NORDER#	order number	"General" tab		
#ORDER#	order number	"General" tab		
#ORGANIZATION#	organization name	"General" tab, "Title Block" tab,		
#CITY#	city of organization	"General" tab		
#TITLE1# – #TITLE5#	job titles in Title Block text, top to bottom numbering	"Title Block" tab		
#NAME1# - #NAME5#	surnames in Title Block text, top to bottom numbering	"Title Block" tab		
#APPTITLE#	software name and version	set automatically		
#PROGRESS#	vessel component analysis progress	set automatically in the range of the cycle #<element#< b=""></element#<>		
#IMG#	figure containing vessel view	set automatically based on input options		
#CALCDATE#	Analysis date and time	set automatically, according to current analysis time		
#COMPLEX#	Determines whether the current parameter is a complex one (containing other parameters). For example, an component's material is a complex parameter.	set automatically in the range of the cycle effect #< PARAMETERS #. Set as «TRUE» or «FALSE»		
#CALC#	Determines if the parameter is an intermediate analysis value	set automatically in the range of the cycle effect # <parameters#. set<br="">as «TRUE» or «FALSE»</parameters#.>		
#NAME#	parameter name	set automatically in the range of the cycle effect #<0PTIONS#		
#DIM#	parameter dimensions (if applicable)	set automatically in the range of the cycle effect #<0PTIONS#		
#SYMB#	parameter symbol (if applicable)	set automatically in the range of the cycle effect #<0PTIONS#		
#VAL#	parameter value	set automatically in the range of the cycle effect #<0PTIONS#		
#RESULT#	Component analysis results (whether or not it meets the	set automatically in the range of the cycle effect		

standards)	# <model_compone< th=""></model_compone<>
	NT#. Set as «SUCCESS»
	or «FAIL».

To simplify the creation of a new template, an existing template installed with the software (eskd.rtf, located in the "Reports Templates" folder) can be used. Copy the template file under a new name and edit it.

Any variable can be used at any point in the template any number of times. Output variable text format will match formatting set in the template.

For example, if the template includes the following fragment:

Analysis was carried out by **"#ORGANIZATION#"** #CITY#

where variable values are "NTP Truboprovod" and "Moscow" respectively, the output will look like this:

Analysis was carried out by "NTP Truboprovod" *Moscow*

The only exception is the #REPORT# (#REPORT_BRIEF#) variable, the formatting of which is set automatically because it includes a large number of text fragments, titles, tables and figures describing the course of component analysis (full or brief).

3.21.3. Conditional variables

Conditional variables can also be used, which provide data output depending on fulfilment of various conditions. Conditional variable consists of two parts with a text fragment between them, which will be printed if conditions are met. The first part consists of text in the form of #<VARIABLE_NAME#. The second (closing) part consists of text in the form of #>VARIABLE_NAME#. Conditional variables can have dependant variables, the value of which is set automatically depending on the state of the conditional variable. The value of a conditional variable is output repeatedly until its value is false.

Variable name	Descripti	ion	Dependant variables	Number of cycles
#<_IF_:condition#	True <i>condition</i>	if is	no	1
#>_IF_:condition#	true.	The		

At the present time the following conditional variables are supported:

	and altained and a		,
	condition can be a variable name (in which case the expression is true, if such variable exists) or a variable_name =value string.		
# <pouring# #>POURING#</pouring# 	True, if vessel is used for filling ("Vessel carrying fluid" option in "General data" dialog box)	no	1
# <test# #>TEST#</test# 	True, if tests are performed ("Test type" option in "General data" dialog box)	No	1
# <element# #>ELEMENT#</element# 	True until all components (full	#REPORT#	equal to the
# <element_brief# #>ELEMENT_BRIEF#</element_brief# 	or brief) from the list under the "Elements" tab are printed	#REPORT_BRIEF#	number of components included in the report
# <model_element# #>MODEL_ELEMENT#</model_element# 	True until all components from the list under the "Elements" tab are printed, where components must meet additional parameters, if such parameters are set.	#ELEMENT# # <parameters# #<attached#< th=""><th>equal to the number of components included in the report</th></attached#<></parameters# 	equal to the number of components included in the report
# <attached# #>ATTACHED#</attached# 	True until all components adjoined to the current and adjoining components are printed	#ELEMENT# # <parameters#< th=""><th>equal to the number of components adjoined to the current and adjoining components</th></parameters#<>	equal to the number of components adjoined to the current and adjoining components
# <parameters# #>PARAMETERS#</parameters# 	True until all parameters of the current component are	# <level# #COMPLEX# #CALC# #PIC# #NAME#</level# 	equal to the number of component parameters

	printed.	#DIM# #SYMB# #VAL#	
# <level# #>LEVEL#</level# 	Specifies parameter nesting level		equal to nesting level of the current parameter

Parameters of the #<MODEL_ELEMENT# conditional variable:

Parameter name	Description	Values	Default value
TOPLEVEL	"Top level" components, i.e. components composing the vessel shell	No	No
т	Component type	CYL – cylindrical shell CYL_CLMN – cylindrical shell of column CONE – conical shell of CONE_CLMN – conical shell of column NZL – nozzle ELL ellipsoidal head CONEHEAD – flat conical head CONEHEAD_STEEP – steep conical head ELL_FLANGEAPP – bolted ellipsoidal flange FLANGEAPP_BOTT – head flange FLANGEAPP_BOTT – head flange FLANGEAPP_BOTT – head flange FLAT_FLANGEAPP_ARM – valve flange FLAT_FLANGEAPP_ARM – valve flange FLAT_FLANGEAPP_ARM – valve flange FLATHEAD – flat head FLATHEAD – flat head FLATFLAND – flat bead FLATH	Νο

For example, to display intermediate analysis data for all components, the following text can be entered in the template:

#<ELEMENT#

#REPORT#

#>ELEMENT#

Existing templates stored in the "Reports Templates" folder can be viewed as examples of template structure.

3.21.4. Embedding the vessel image

An image of the vessel can be inserted into the output using the #IMG# variable. The following parameters for the the #IMG# variable are available to adjust image output:

Parameter name	Description	Values	Default value
VIEW	view type	TOP – top view LEFT – left-side view FRONT – front view ISO – isometric view USER – custom view	FRONT
x	image width in pixels	1-65535	100
Y	image height in pixels	1-65535	100
STYLE	image style	SOLID – solid filling TRANSPARENT – transparent WIREFRAME – beam	SOLID
AA	if installed, perform image anti-aliasing (smoothing)	no	no

For example, to display an image containing beam top view of the vessel with dimension of 100x200 pixels, the following text must be entered:

#IMG:VIEW=TOP,X=100,Y=200,STYLE=WIREFRAME#

3.21.5. Embedding analysis time and date

Time and date can be inserted into the output in different formats using the #CALCDATE# variable. For time and date formatting, the #CALCDATE# variable has a string parameter DATEFORMAT, which can include the following fields:

Field	Description
%a	Abbreviated weekday name
%A	Full weekday name

%b	Abbreviated month name	
%B	Full month name	
%с	Date and time format appropriate for current locale	
%d	Day of month as two digit number (01 – 31)	
%Н	Hour in 24-hour format (00 – 23)	
%I	Hour in 12-hour format (01 – 12)	
%j	Day of year as three digit number (001 – 366)	
%m	Month as two digit number (01 – 12)	
%M	Minute as two digit number (00 – 59)	
%р	Current locale's A.M./P.M. indicator for 12-hour clock	
%S	Second as two digit number (00 – 59)	
Week of year as two digit number, with Sunday as the first day of the week (
%0 U	60 53)	
%w	Weekday as two digit number (0 – 6; Sunday is 0)	
%W	Week of year as two digit number, with Monday as the first day of the week (00 –	
70 VV	53)	
%х	Date format appropriate for current locale	
%X	Time format appropriate for current locale	
%у	Year without century, as two digit number (00 – 99)	
%Y	Year with century, as four digit number	
%z,	Either time-zone name or time zone abbreviation, depending on registry settings;	
%Z	leave empty if time zone is unknown	

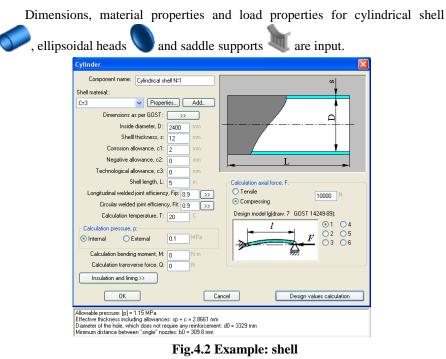
For example, for date output in the DD.MM.YYYY HH:MM, format, the following text must be entered:

#CALCDATE:DATEFORMAT=%d.%m.%Y %H:%M#

4. Example

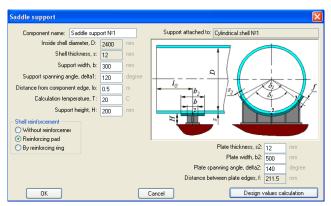
4.1. Data input

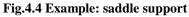
An analysis of a horizontal vessel on saddle supports carrying petrochemical products (ρ =780 kg/m³) with excessive internal pressure of 1 atm is given as an example. Excessive pressure during hydro-testing is 2 atm.


The vessel includes a shell, 5000mm in length and 2400mm in diameter, and two ellipsoidal heads. The vessel is placed on saddle supports, 300mm in width and with a wrapping angle of 120° , with reinforcing pads, 500mm in width, 12mm in thickness and with a wrapping angle of 140° . Corrosion allowance is 2mm. The vessel is under axial compression force of 100000N.

New	
New apparatus Horizontal vessels and apparatuses Vertical vessels and apparatuses Column vessels and apparatuses	OK Cancel Help

After entering vessel type and general data, model creation can begin.


General data			
Object name:]
Unit name:	tets		-
Vessel with fluid			
Vessel filling ratio: (under operating conditions!)		100	%
Operating environment	oil		
Density of operating fluid:		880	kg/m3
Test review:	Hydrotesting	~	/
Test pressure:		0.2	MPa
Calculation of nozzles and (module "PASSAT-Nozzl			
OK		Cano	el


Fig.4.1 Example: general data

Ellipsoidal head	\mathbf{X}
Component name: Ellipsoidal head N#1	
Head material:	<u></u>
CT3 Properties Add	
Head inside diameter, D: 2400 mm	
Head wall thickness, s1: 10 mm	
Corrosion allowance, c1: 2 mm	
Negative allowance, c2: 0 mm	
Technological allowance, c3: 0 mm	
Head height, H: 600 mm	
Straight flange length, h1: 0 mm	
Welded joint efficiency, Fi: 0.9 >>	
Calculation temperature, T: 20	
Calculation pressure, p:	
● Internal ○ External 0.1 MPa	
Insulation and lining >>	
OK Ca	ncel Design values calculation
[Effective thickness including allowances: s1p + c = 2.866 mm Allowable pressure: [p] = 0.9225 MPa	

Fig.4.3 Example:head

The following model will be displayed in the graphic display window.

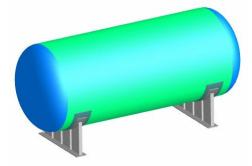
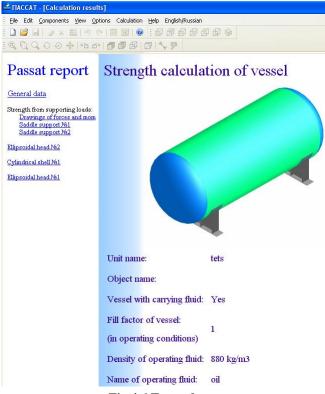



Fig.4.5. Example: calculation model

4.2. Analysis and output

To analyse the model, press "Vessel analysis F3" (or ffield field fiel

Fig.4.6 Example: report

To get detailed analysis output for a specific component, the component must be selected by clicking on it or pressing the "Tab" key.

5. References

- 1. SA 03-004-08. Strength Calculation of Vessels and Apparatuses. Norms and methods of strengthh calculation. Standard of Rostekhexpertiza Expert Association of technogenic hazardous facilities.
- STO-SA-03.003-2009. Vessels and apparatuses. Norms and methods of strength calculation. Seismic loads calculation. Standard of Association of Expert organizations of hazardous facilities (Association Rostekhexpertiza)
- 3. GOST 34233.1-2017. Vessels and apparatuses. Norms and methods of strength calculation. General requirements.
- 4. GOST 34233.2-2017. Vessels and apparatuses. Norms and methods of strength calculation. Calculation of cylindrical and conical shells, dished and flat bottoms and heads.
- GOST 34233.3-2017. Vessels and apparatuses. Norms and methods of strength calculation. Reinforcement of openings in shells and heads under external and internal pressure. Strength calculation of shells and heads under external static loads on the nozzle.
- 6. GOST 34233.4-2017. Vessels and apparatuses. Norms and methods of strength calculation. Strength and leak-tightness calculation of flange joints.
- GOST 34233.5-2017. Vessels and apparatuses. Norms and methods of strength calculation. Calculation of the shells and heads from influence of support loads.
- 8. GOST 34233.6-2017. Vessels and apparatuses. Norms and methods of strength calculation. Strength calculation under low-cycle loads.
- 9. GOST 34233.7-2017. Vessels and apparatuses. Norms and methods of strength calculation. Heat exchangers.
- 10. GOST 34233.8-2017. Vessels and apparatuses. Norms and methods of strength calculation. Jacketed vessels and apparatuses.
- 11. GOST 34233.9-2017. Vessels and apparatuses. Norms and methods of strength calculation. Determination of stresses nozzle-to-shells and heads under action of pressure and external loads on the nozzle.
- 12. GOST 34233.10-2017. Vessels and apparatuses. Norms and methods of strength calculation. Vessels and apparatuses operating in hydrogen sulphide media.
- 13. GOST 34233.11-2017. Vessels and apparatuses. Norms and methods of strength calculation. Method of strength calculation of shells and head,

with provision for displacement of weld joint edges, angularity and outof-roundness of the shells.

- 14. GOST 34233.12-2017. Vessels and apparatuses. Norms and methods of strength calculation. Requirements to the form of presentation of strength calculations made on computer.
- 15. GOST 14249-89. Vessels and apparatuses. Norms and methods of strength calculation.
- 16. GOST 25221-82. Vessels and apparatuses. Spherical heads and covers without knuckle. Norms and methods of strength calculation.
- 17. GOST 26202-84. Vessels and apparatuses. Norms and methods of strength calculation from influence of supporting loads on the shells and heads.
- 18. GOST 24755-89. Vessels and apparatuses. Norms and methods of strength calculation of holes reinforcement.
- 19. GOST 25859-83. Steel vessels and apparatuses. Norms and methods of strength calculation under low-cycle loads.
- 20. GOST R 51273-99. Vessels and apparatuses. Norms and methods of strength calculation. Determination of calculated forces against wind and seismic loads for column vessels.
- 21. GOST R 51274-99. Vessels and apparatuses. Column vessels. Norms and methods of strength calculation.
- 22. GOST 34283-2017. Vessels and apparatuses. Vessels and Apparatus. Norms and methods of strength calculation from wind loads, seismic influence and other external loads.
- 23. GOST 25867-83. Vessels and apparatuses. Jacketed vessels. Norms and methods of strength calculation.
- 24. GOST 30780-2002. Steel vessels and apparatuses. Bellows and sliding joints. Strength calculation methods.
- 25. GOST 26159-84. Iron vessels and apparatuses. Norms and methods of strength calculation. General.
- 26. GOST 27772-88. Mill products for constructional steel works.
- 27. GOST R 54522-2011. High pressure vessels and apparatus. Norms and methods of strength calculation.
- 28. GOST 26303-84 High-pressure vessels and apparatus. Threaded studs. Methods of strength calculations.
- 29. GOST R 55722-2013. Vessels and apparatus. Stress analysis code. Seismic analysis.

- GOST 34283-2017. Vessels and apparatus. Norms and methods of strength calculation under wind loads, seismic influence and other external loads.
- 31. GOST 31385-2016. Vertical cylindrical steel tanks for oil and oil-products. General specifications.
- 32. OST 26-01-86-88. Fixed metal seals for vessels and equipment at pressures from 10 to 100 MPa.
- 33. OST 26-1046-87. High-pressure vessels and apparatus. Methods of strength calculations.
- 34. PNAE G-7-002-86. Strength calculation norms of the equipment and pipelines of atomic power plants. –M.: Energoatomizdat, 1989. p. 525
- 35. SP 20.13330.2016. Set of rules. Loads and actions.
- 36. RD 24.200.08-90. Vessels and apparatuses. Norms and methods of stress analysis conical, ellipsoidal and spherical transitions.
- 37. RD 26-14-88. Vessels and apparatuses. Norms and methods of strength calculation. Components of heat exchangers.
- 38. RD 26-15-88. Vessels and apparatuses. Norms and methods of strength and leak integrity calculation of flange joints.
- 39. RD RTM 26-01-96-83. Flat round heads and heads with radial reinforcing ribs of vessels and apparatuses.
- 40. RD RTM 26-13-79. Heads and grids of air coolers. Strength analysis method.
- 41. RD 26-02-62-98. Strength calculation of vessel and apparatus components operating in corrosive hydrogen sulphide environments.
- 42. RD 26-02-63-87. Technical requirements towards designing and manufacturing of vessels, apparatuses and technological units of oil and gas treatment facilities working in environments causing hydrosulphuric corrosion cracking.
- 43. RD 10-249-98 Norms of strength calculation of stationary boilers and steam and hot-water pipelines.
- 44. OST 26-01-64-83. Fasteners. Construction and dimensions.
- 45. RD 26-01-169-89. Vessels and apparatuses. Norms and methods of strength calculation of the heads in attaching points of dumbbell piers.
- 46. RD 24.200.21-91. Vessels and apparatuses. Norms and methods of strength calculation of the components of floating heads within shell and tube heat exchangers.

- 47. RD 26-18-8-89. Weld joints of peep holes, nozzles and couplings welding. Basic types, structural components and dimensions.
- 48. RD 26.260.09-92. Vessels and apparatuses. Norms and methods of strength calculation of cylindrical shells and dished heads in junction points of nozzles under external static loads.
- 49. RTM 26-110-77. Strength calculation of cylindrical horizontal apparatus mounted on saddle supports.
- 50. RTM 26-111-77. Supports of cylindrical vertical vessels and apparatus. Norms and methods of strength calculation.
- 51. RD 26-01-149-84. Steel welded vessels and apparatuses with jackets made of semi-pipes located along generatrix. Codes and methods of strength calculation.
- 52. RD RTM 26-01-44-78. Details of pipelines for pressure over 10 to 100 MPa. Norms and methods of strength calculation.
- 53. SA 03-003-07. Strength and vibration calculation of steel technological pipelines. Standard of Rostekhexpertiza Expert Association of technogenic hazardous facilities.
- 54. STO-SA-03-002-2009. Rules for design, fabrication and assembly of vertical cylindrical steel tanks for oils. Standard of Rostekhexpertiza Expert Association of technogenic hazardous facilities.
- 55. Gorbachev M.V. "Heat and Mass Transfer". Publishing house of NSTU, 2015.
- 56. Standards of the Expansion Joint Manufactures Association, INC, 8th Edition, 2003.
- 57. EN 13445-3. European Standard. Unfired pressure vessels Part 3. Issue 1 (2002-05).
- 58. EN 1991-1-4. Actions on structures General actions Wind actions
- 59. EN 1998-1. Design of structures for earthquake resistance. General rules, seismic actions and rules for buildings
- 60. ASME Boiler and Pressure Vessel Code. Sect.VIII, Div.1.
- 61. ASME VIII, Div 1, 2015. Rules for construction of pressure vessels.
- 62. ASME VIII, Div 2, 2015. Rules for construction of pressure vessels. Alternative rules.
- 63. ASME II, 2015.
- 64. WRC-107 Welding Research Council. Bulletin. "Local Stresses in Spherical and Cylindrical Shells due to External Loadings". 1979.

- 65. WRC-297 Welding Research Council. Bulletin. "Local Stresses in Cylindrical Shells due to External Loadings on Nozzles Supplement to WRC Bulletin №107". 1987.
- 66. WRC-537 Welding Research Council. Bulletin. "Precision Equations and Enhanced diagrams for Local Stresses in Spherical and Cylindrical Shells due to External Loadings for implementation of WRC Bulletin 107. 2013.
- 67. BS-5500: 1976 Specification for Unfired fusion welded pressure vessels. British Standards Institution.
- 68. WRC-368 Welding Research Council. Bulletin. "Stresses in Intersecting Cylinders subjected to Pressure". 1991. –32 p.
- 69. Bildy, Les M., 2000, "A Proposed Method for Finding Stress and Allowable Pressure in Cylinders with Radial Nozzles," PVP Vol. 399, ASME, New York, NY, pp. 77-82.
- Zick, L.P., "Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports", Welding Research Journal Supplement, September, 1951.
- Henry H.Bednar, Pressure Vessel Design Handbook. Second edition. 1986
- 72. Dennis R.Moss, Pressure Vessel Design Manual. 1987
- 73. AzDTN 2.3-1. Seysmik rayonlarda tikinti (zərbaycan Respublikası Dövlət Şəhərsalma və Arxitektura Komitəsi)
- 74. IS 1893. Indian Standard. Criteria for earthquake resistant design of structures.
- 75. API 650-2020. Welded Tanks for Oil Storage